Skip to main content

Inferred long term trends in lightning activity over Africa

Abstract

Global warming is becoming a reality, with growing evidence that anthropogenic activity on our planet is starting to influence our climate (IPCC, 2001). Due to the increase in significant weather-related disasters in recent years, it is important to investigate the role of global warming on such changes. In this paper we attempt to estimate the long term trends in lightning activity over tropical Africa during the past 50 years, using upper tropospheric water vapor as a proxy for regional lightning activity. We use the NCAR/NCEP reanalysis product available for the period 1948 to the present to estimate the long term trends in lightning activity. Similarity between the long term African lightning variability and observed rainfall and river discharge variability are demonstrated. Since 1950 the inferred lightning activity over Africa shows significant variability, reaching a maximum during the 1960s, followed by a decrease in activity during the following 30 years.

References

  1. Amarasekera, K. N., R. F. Lee, E. R. Williams, and E. A. B. Eltahir, ENSO and the natural variability in the flow of tropical rivers, J. Hydrology, 200, 24–39, 1997.

    Article  Google Scholar 

  2. Christian, H. J., R. J. Blakeslee, D. J. Boccippio, W. L. Boeck, D. E. Buechler, K. T. Driscoll, S. J. Goodman et al., Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347, 2003.

    Article  Google Scholar 

  3. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686–688, 2005.

    Article  Google Scholar 

  4. Fullekrug, M. and A. Fraser-Smith, Global lightning and climate variability inferred from ELF magnetic field variations, Geophys. Res. Lett., 24(19), 2411–2414, 1997.

    Article  Google Scholar 

  5. Heckman, S. J., E. R. Williams, and R. Boldi, Total global lightning inferred from Schumann Resonance measurements, J. Geophys. Res., 103, 31775–31779, 1998.

    Article  Google Scholar 

  6. IPCC Climate Change 2001—IPCC Third Assessment Report, World Meteorological Organisation and UNEP http://www.ipcc.ch/, 2001.

    Google Scholar 

  7. Kistler, R. E., W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousk et al., The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation, Bull. Amer. Meteor. Soc., 82, 247–268, 2001.

    Article  Google Scholar 

  8. Mills, E., Insurance in a climate of change, Science, 309, 1040–1044, 2005.

    Article  Google Scholar 

  9. Milly, P. C. D., R. T. Wetherald, K. A. Dunne, and T. L. Delworth, Increasing risk of great floods in a changing climate, Nature, 415, 514–517, 2002.

    Article  Google Scholar 

  10. Nicholson, S., The nature of rainfall variability over Africa during the last two centuries, Global and Planeary Change, 26, 137–158, 2000.

    Article  Google Scholar 

  11. Price, C., Evidence for a link between global lightning activity and upper tropospheric water vapor, Nature, 406, 290–293, 2000.

    Article  Google Scholar 

  12. Price, C. and M. Asfur, Can Lightning Observations be used as an Indicator of Upper Tropospheric Water Vapor Variability?, Bull. Amer. Meteor. Soc., 87, 291–298, 2006.

    Article  Google Scholar 

  13. Price, C. and A. Melnikov, Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters, J. Atmos. Solar-Terr. Phys., 66, 1179–1185, 2004.

    Article  Google Scholar 

  14. Price, C. and D. Rind, A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97, 9919–9933, 1992.

    Article  Google Scholar 

  15. Price, C. and D. Rind, Possible implications of global climate change on global lightning distributions and frequencies, J. Geophys. Res., 99, 10823–10831, 1994a.

    Article  Google Scholar 

  16. Price, C. and D. Rind, Modeling global lightning distributions in a General Circulation Model, Mon. Wea. Rev., 122, 1930–1939, 1994b.

    Article  Google Scholar 

  17. Sato, M. and H. Fukunishi, New evidence for a link between lightning activity and tropical upper cloud coverage, Geophys. Res. Lett., 32, L12807, doi:10.1029/2005GL022865, 2005.

  18. Schumann, W. O., Uber die strahlungslosen eigenschwingungen einer leitenden kugel, die von einer luftschicht und einer ionospharenhulle umgeben ist, Z. Naturforsch., 7a, 149, 1952.

    Google Scholar 

  19. Webster P. J., G. J. Holland, J. A. Curry, and H. R. Chang, Changes in tropical cyclone number, duration, and intensity in a warming environment, Science, 309, 1844–1846, 2005.

    Article  Google Scholar 

  20. Williams, E. R., Lightning and Climate: A Review, Atmos. Res., 76, 272–287, 2005.

    Article  Google Scholar 

  21. Williams, E. R. and G. Satori, Lightning, thermodynamics and hydrological comparison of the two tropical continental chimneys, J. Atmos. Sol.-Terr. Phys., 66, 1213–1231, 2004.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Colin Price.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Price, C., Asfur, M. Inferred long term trends in lightning activity over Africa. Earth Planet Sp 58, 1197–1201 (2006). https://doi.org/10.1186/BF03352010

Download citation

Key words

  • Lightning
  • climate change
  • Africa
  • ELF
  • Schumann resonance