Skip to main content

Volume 58 Supplement 9

Special Issue: International Sessions of Japan Earth and Planetary Science Joint Meeting 2005

Low-frequency variability of a two-layer ocean forced by periodic winds

Abstract

To seek the variability of the oceanic subtropical gyre on interannual and longer time scales we have conducted numerical experiments with a two-layer quasigeostrophic model in a square basin bounded by no-slip walls. We find that when the amplitude of annually periodic wind forcing is increased, the time series of the total energy exhibit a transition to chaos in such a manner that the response frequency constitutes a quasi-devil’s staircase against the forcing amplitude; in particular, the n-cycles appear in descending order of n. The low-frequency modes may thus be produced by seasonal winds. Since, however, the power of the subharmonics is much weaker than that with the forcing frequency, their energy would be concealed by noise in the presence of stochastic wind forcing. The present result is in contrast with the case of the time-independent forcing in which we observe the intrinsic frequencies probably associated with the wave propagation, frequency locking and a cascade of period-doubling bifurcations.

References

  • Anderson, D. L. T. and P. D. Killworth, Non-linear propagation of long Rossby waves, Deep-Sea Res., 26, 1033–1050, 1979.

    Article  Google Scholar 

  • Auad, G., Interdecadal dynamics of the North Pacific Ocean, J. Phys. Oceanogr., 33, 2483–2503, 2003.

    Article  Google Scholar 

  • Berloff, P. S. and S. Meacham, The dynamics of an equivalent-barotropic model of the wind-driven circulation, J. Mar. Res., 55, 407–451, 1997.

    Article  Google Scholar 

  • Berloff, P. S. and S. Meacham, The dynamics of a simple baroclinic model of the wind-driven circulation, J. Phys. Oceanogr., 28, 361–388, 1998.

    Article  Google Scholar 

  • Berloff, P. S. and J. C. McWilliams, Large-scale, low-frequency variability in wind-driven ocean gyres, J. Phys. Oceanogr., 29, 1925–1949, 1999.

    Article  Google Scholar 

  • Cessi, P. and S. Louazel, Decadal oceanic response to stochastic wind forcing, J. Phys. Oceanogr., 31, 3020–3029, 2001.

    Article  Google Scholar 

  • Chang, K.-I., M. Ghil, K. Ide, and C.-C. A. Lai, Transition to aperiodic variability in a wind-driven double-gyre circulation model, J. Phys. Oceanogr., 31, 1260–1286, 2001.

    Article  Google Scholar 

  • Crutchfield, J., J. D. Farmer, N. Packard, and R. Shaw, Chaos, Sci. Amer., 255, 46–57, 1986.

    Article  Google Scholar 

  • Deser, C., Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s, J. Clim., 12, 1697–1706, 1999.

    Article  Google Scholar 

  • Devaney, R. L., An Introduction to Chaotic Dynamical Systems 2nd ed., 336 pp., Addison-Wesley, Redwood City, CA, 1989.

    Google Scholar 

  • Dewar, W. K., Arrested fronts, J. Mar. Res., 49, 21–55, 1991.

    Article  Google Scholar 

  • Dijkstra, H. A., Nonlinear Physical Oceanography, 456 pp., Kluwer, Dordrecht, 2000.

    Book  Google Scholar 

  • Dijkstra, H. A. and C. A. Katsman, Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams, Geophys. Astrophys. Fluid Dyn., 85, 195–232, 1997.

    Article  Google Scholar 

  • Dijkstra, H. A. and W. Weijer, Stability of the global ocean circulation: Basic bifurcation diagrams, J. Phys. Oceanogr., 35, 933–948, 2005.

    Article  Google Scholar 

  • Flierl, G. R., Simple applications of McWilliams “A note on a consistent quasi-geostrophic model in a multiply connected domain,” Dyn. Atmos. Oceans, 1, 443–453, 1977.

    Article  Google Scholar 

  • Frankignoul, C., P. Müller, and E. Zorita, A simple model of the decadal response of the ocean to stochastic wind forcing, J. Phys. Oceanogr., 27, 1533–1546, 1997.

    Article  Google Scholar 

  • Gent, P. R. and J. C. McWilliams, Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150–155, 1990.

    Article  Google Scholar 

  • Ghil, M., Y. Feliks, and L. U. Sushama, Barotropic and baroclinic aspects of the wind-driven ocean circulation, Physica D, 167, 1–35, 2002.

    Article  Google Scholar 

  • Grassberger, P., Do climatic attractor exist?, Nature, 323, 609–612, 1986.

    Article  Google Scholar 

  • Hasselmann, K., Stochastic climate models. I. Theory, Tellus, 28, 473–485, 1976.

    Article  Google Scholar 

  • Haltiner, G. J. and R. T. Williams, Numerical Prediction and Dynamic Meteorology 2nd ed., 477 pp., John Wiley & Sons, New York, 1980.

    Google Scholar 

  • Hendershott, M. C., Single layer models of the general circulation, in General Circulation of the Ocean, edited by D. I. Abarbanel and W. R. Young, 291 pp., Springer-Verlag, New York, 1987.

    Google Scholar 

  • Holland, W. R., The role of mesoscale eddies in the general circulation of the ocean—numerical experiments using a wind-driven quasigeostrophic model, J. Phys. Oceanogr., 8, 363–392, 1978.

    Article  Google Scholar 

  • Holland, W. R. and L. B. Lin, On the generation of mesoscale eddies and their contribution to the oceanic general circulation. I. A preliminary numerical experiment, J. Phys. Oceanogr., 5, 642–657, 1975.

    Article  Google Scholar 

  • Holland, W. R., D. E. Harrison, and A. J. Semtner, Jr., Eddy-resolving numerical models of large-scale ocean circulation, in Eddies in Marine Science, edited by A. R. Robinson, 609 pp., Springer-Verlag, New York, 1983.

    Google Scholar 

  • Jiang, S., F.-F. Jin, and M. Ghil, Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double gyre, shallow-water model, J. Phys. Oceanogr., 25, 764–786, 1995.

    Article  Google Scholar 

  • Kamenkovich, V. M., V. A. Sheremet, A. R. Pastushkov, and S. O. Belotserkovsky, Analysis of the barotropic model of the subtropical gyre in the ocean for finite Reynolds numbers. Part I, J. Mar. Res., 53, 959–994, 1995.

    Article  Google Scholar 

  • LaCasce, J. H., Baroclinic Rossby waves in a square basin, J. Phys. Oceaongr., 30, 3161–3178, 2000.

    Article  Google Scholar 

  • Lorenz, E. N., Available potential energy and the maintenance of the general circulation, Tellus, 7, 157–167, 1955.

    Article  Google Scholar 

  • Luyten, J. R., J. Pedlosky, and H. Stommel, The ventilated thermocline, J. Phys. Oceanogr., 13, 292–309, 1983.

    Article  Google Scholar 

  • McCalpin, J. D. and D. B. Haidvogel, Phenomenology of the lowfrequency variability in a reduced-gravity, quasigeostrophic double-gyre model, J. Phys. Oceanogr., 26, 739–752, 1996.

    Article  Google Scholar 

  • McWilliams, J. C., A note on a consistent quasigeostrophic model in a multiply connected domain, Dyn. Atmos. Oceans, 1, 427–441, 1977.

    Article  Google Scholar 

  • Meacham, S. P., Low-frequency variability in the wind-driven circulation, J. Phys. Oceanogr., 30, 269–293, 2000.

    Article  Google Scholar 

  • Meacham, S. P. and P. S. Berloff, Barotropic, wind-driven circulation in a small basin, J. Mar. Res., 55, 523–563, 1997.

    Article  Google Scholar 

  • Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, Interdecadal variability of the Pacific Ocean: model response to observed heat flux and wind stress anomalies, Clim. Dyn., 9, 287–302, 1994.

    Article  Google Scholar 

  • Nauw, J. J. and H. A. Dijkstra, The origin of low-frequency variability of double-gyre wind-driven flows, J. Mar. Res., 59, 567–597, 2001.

    Article  Google Scholar 

  • Orlanski, I., The influence of bottom topography on the stability of jets in a baroclinic fluid. J. Atmos. Sci., 26, 1216–1232, 1969.

    Article  Google Scholar 

  • Pedlosky, J., Geophysical Fluid Dynamics 2nd ed., 710 pp., Springer-Verlag, New York, 1987.

    Book  Google Scholar 

  • Pedlosky, J., The dynamics of the oceanic subtropical gyres, Science, 248, 316–322, 1990.

    Article  Google Scholar 

  • Pierce, D. W., T. P. Barnett, N. Schneider, R. Saravanan, D. Dommenget, and M. Latif, The role of ocean dynamics in producing decadal climate variability in the North Pacific, Clim. Dyn., 18, 51–70, 2001.

    Article  Google Scholar 

  • Primeau, F., Multiple equilibria and low-frequency variability of the wind-driven ocean circulation, J. Phys. Oceanogr., 32, 2236–2256, 2002.

    Article  Google Scholar 

  • Procaccia, I., Complex or just complicated?, Nature, 333, 498–499, 1988.

    Article  Google Scholar 

  • Qiu, B., Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback, J. Phys. Oceanogr., 33, 2465–2482, 2003.

    Article  Google Scholar 

  • Qiu, B. and T. M. Joyce, Interannual variability in the mid- and low-latitude western North Pacific, J. Phys. Oceanogr., 22, 1062–1079, 1992.

    Article  Google Scholar 

  • Rhines, P. B. and W. R. Young, A theory of the wind-driven circulation I. Mid-ocean gyres, J. Mar. Res., 40 (Suppl.), 559–596, 1982.

    Google Scholar 

  • Sakamoto, T., On discontinuities in the Sverdrup interior, J. Phys. Oceanogr., 29, 2457–2461, 1999.

    Article  Google Scholar 

  • Sakamoto, T., Determination of wind-driven ocean circulation inside closed characteristics, Geophys. Astrophys. Fluid Dyn., 94, 151–176, 2001.

    Article  Google Scholar 

  • Sakamoto, T., Western boundary current separation caused by a deep countercurrent, Geophys. Astrophys. Fluid Dyn., 96, 179–199, 2002.

    Article  Google Scholar 

  • Sakamoto, T., A route to Eulerian chaos in a two-layer wind-driven ocean, Fluid Dyn. Res., 34, 117–134, 2004.

    Article  Google Scholar 

  • Schneider, N., A. J. Miller, and D. W. Pierce, Anatomy of North Pacific decadal variability, J. Clim., 15, 586–605, 2002.

    Article  Google Scholar 

  • Simonnet, E. and H. A. Dijkstra, Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation, J. Phys. Oceanogr., 32, 1747–1762, 2002.

    Article  Google Scholar 

  • Sura, P., F. Lunkeit, and K. Fraedrich, Decadal variability in a simplified wind-driven ocean model, J. Phys. Oceanogr., 30, 1917–1930, 2000.

    Article  Google Scholar 

  • Thompson, L. and C. A. Ladd, The response of the North Pacific Ocean to decadal variability in atmospheric forcing: Wind versus buoyancy forcing, J. Phys. Oceanogr., 34, 1373–1386, 2004.

    Article  Google Scholar 

  • Trenberth, K. E. and J. W. Hurrell, Decadal atmosphere-ocean variations in the Pacific, Clim. Dyn., 9, 303–319, 1994.

    Article  Google Scholar 

  • van der Vaart, P. C. F., H. M. Schuttelaars, D. Calvete, and H. A. Dijkstra, Instability of time-dependent wind-driven ocean gyres, Phys. Fluids, 14, 3601–3615, 2002.

    Article  Google Scholar 

  • Willmott, A. J., A note on the steepening of long Rossby waves, Deep-Sea Res., 32, 613–617, 1985.

    Article  Google Scholar 

  • Young, W. R., Baroclinic theories of the wind driven circulation, in General Circulation of the Ocean, edited by D. I. Abarbanel and W. R. Young, 291 pp., Springer-Verlag, New York, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Sakamoto.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Sakamoto, T. Low-frequency variability of a two-layer ocean forced by periodic winds. Earth Planet Sp 58, 1203–1212 (2006). https://doi.org/10.1186/BF03352011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352011

Key words