Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Low-frequency variability of a two-layer ocean forced by periodic winds

Abstract

To seek the variability of the oceanic subtropical gyre on interannual and longer time scales we have conducted numerical experiments with a two-layer quasigeostrophic model in a square basin bounded by no-slip walls. We find that when the amplitude of annually periodic wind forcing is increased, the time series of the total energy exhibit a transition to chaos in such a manner that the response frequency constitutes a quasi-devil’s staircase against the forcing amplitude; in particular, the n-cycles appear in descending order of n. The low-frequency modes may thus be produced by seasonal winds. Since, however, the power of the subharmonics is much weaker than that with the forcing frequency, their energy would be concealed by noise in the presence of stochastic wind forcing. The present result is in contrast with the case of the time-independent forcing in which we observe the intrinsic frequencies probably associated with the wave propagation, frequency locking and a cascade of period-doubling bifurcations.

References

  1. Anderson, D. L. T. and P. D. Killworth, Non-linear propagation of long Rossby waves, Deep-Sea Res., 26, 1033–1050, 1979.

    Article  Google Scholar 

  2. Auad, G., Interdecadal dynamics of the North Pacific Ocean, J. Phys. Oceanogr., 33, 2483–2503, 2003.

    Article  Google Scholar 

  3. Berloff, P. S. and S. Meacham, The dynamics of an equivalent-barotropic model of the wind-driven circulation, J. Mar. Res., 55, 407–451, 1997.

    Article  Google Scholar 

  4. Berloff, P. S. and S. Meacham, The dynamics of a simple baroclinic model of the wind-driven circulation, J. Phys. Oceanogr., 28, 361–388, 1998.

    Article  Google Scholar 

  5. Berloff, P. S. and J. C. McWilliams, Large-scale, low-frequency variability in wind-driven ocean gyres, J. Phys. Oceanogr., 29, 1925–1949, 1999.

    Article  Google Scholar 

  6. Cessi, P. and S. Louazel, Decadal oceanic response to stochastic wind forcing, J. Phys. Oceanogr., 31, 3020–3029, 2001.

    Article  Google Scholar 

  7. Chang, K.-I., M. Ghil, K. Ide, and C.-C. A. Lai, Transition to aperiodic variability in a wind-driven double-gyre circulation model, J. Phys. Oceanogr., 31, 1260–1286, 2001.

    Article  Google Scholar 

  8. Crutchfield, J., J. D. Farmer, N. Packard, and R. Shaw, Chaos, Sci. Amer., 255, 46–57, 1986.

    Article  Google Scholar 

  9. Deser, C., Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s, J. Clim., 12, 1697–1706, 1999.

    Article  Google Scholar 

  10. Devaney, R. L., An Introduction to Chaotic Dynamical Systems 2nd ed., 336 pp., Addison-Wesley, Redwood City, CA, 1989.

    Google Scholar 

  11. Dewar, W. K., Arrested fronts, J. Mar. Res., 49, 21–55, 1991.

    Article  Google Scholar 

  12. Dijkstra, H. A., Nonlinear Physical Oceanography, 456 pp., Kluwer, Dordrecht, 2000.

    Google Scholar 

  13. Dijkstra, H. A. and C. A. Katsman, Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams, Geophys. Astrophys. Fluid Dyn., 85, 195–232, 1997.

    Article  Google Scholar 

  14. Dijkstra, H. A. and W. Weijer, Stability of the global ocean circulation: Basic bifurcation diagrams, J. Phys. Oceanogr., 35, 933–948, 2005.

    Article  Google Scholar 

  15. Flierl, G. R., Simple applications of McWilliams “A note on a consistent quasi-geostrophic model in a multiply connected domain,” Dyn. Atmos. Oceans, 1, 443–453, 1977.

    Article  Google Scholar 

  16. Frankignoul, C., P. Müller, and E. Zorita, A simple model of the decadal response of the ocean to stochastic wind forcing, J. Phys. Oceanogr., 27, 1533–1546, 1997.

    Article  Google Scholar 

  17. Gent, P. R. and J. C. McWilliams, Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150–155, 1990.

    Article  Google Scholar 

  18. Ghil, M., Y. Feliks, and L. U. Sushama, Barotropic and baroclinic aspects of the wind-driven ocean circulation, Physica D, 167, 1–35, 2002.

    Article  Google Scholar 

  19. Grassberger, P., Do climatic attractor exist?, Nature, 323, 609–612, 1986.

    Article  Google Scholar 

  20. Hasselmann, K., Stochastic climate models. I. Theory, Tellus, 28, 473–485, 1976.

    Article  Google Scholar 

  21. Haltiner, G. J. and R. T. Williams, Numerical Prediction and Dynamic Meteorology 2nd ed., 477 pp., John Wiley & Sons, New York, 1980.

    Google Scholar 

  22. Hendershott, M. C., Single layer models of the general circulation, in General Circulation of the Ocean, edited by D. I. Abarbanel and W. R. Young, 291 pp., Springer-Verlag, New York, 1987.

    Google Scholar 

  23. Holland, W. R., The role of mesoscale eddies in the general circulation of the ocean—numerical experiments using a wind-driven quasigeostrophic model, J. Phys. Oceanogr., 8, 363–392, 1978.

    Article  Google Scholar 

  24. Holland, W. R. and L. B. Lin, On the generation of mesoscale eddies and their contribution to the oceanic general circulation. I. A preliminary numerical experiment, J. Phys. Oceanogr., 5, 642–657, 1975.

    Article  Google Scholar 

  25. Holland, W. R., D. E. Harrison, and A. J. Semtner, Jr., Eddy-resolving numerical models of large-scale ocean circulation, in Eddies in Marine Science, edited by A. R. Robinson, 609 pp., Springer-Verlag, New York, 1983.

    Google Scholar 

  26. Jiang, S., F.-F. Jin, and M. Ghil, Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double gyre, shallow-water model, J. Phys. Oceanogr., 25, 764–786, 1995.

    Article  Google Scholar 

  27. Kamenkovich, V. M., V. A. Sheremet, A. R. Pastushkov, and S. O. Belotserkovsky, Analysis of the barotropic model of the subtropical gyre in the ocean for finite Reynolds numbers. Part I, J. Mar. Res., 53, 959–994, 1995.

    Article  Google Scholar 

  28. LaCasce, J. H., Baroclinic Rossby waves in a square basin, J. Phys. Oceaongr., 30, 3161–3178, 2000.

    Article  Google Scholar 

  29. Lorenz, E. N., Available potential energy and the maintenance of the general circulation, Tellus, 7, 157–167, 1955.

    Article  Google Scholar 

  30. Luyten, J. R., J. Pedlosky, and H. Stommel, The ventilated thermocline, J. Phys. Oceanogr., 13, 292–309, 1983.

    Article  Google Scholar 

  31. McCalpin, J. D. and D. B. Haidvogel, Phenomenology of the lowfrequency variability in a reduced-gravity, quasigeostrophic double-gyre model, J. Phys. Oceanogr., 26, 739–752, 1996.

    Article  Google Scholar 

  32. McWilliams, J. C., A note on a consistent quasigeostrophic model in a multiply connected domain, Dyn. Atmos. Oceans, 1, 427–441, 1977.

    Article  Google Scholar 

  33. Meacham, S. P., Low-frequency variability in the wind-driven circulation, J. Phys. Oceanogr., 30, 269–293, 2000.

    Article  Google Scholar 

  34. Meacham, S. P. and P. S. Berloff, Barotropic, wind-driven circulation in a small basin, J. Mar. Res., 55, 523–563, 1997.

    Article  Google Scholar 

  35. Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, Interdecadal variability of the Pacific Ocean: model response to observed heat flux and wind stress anomalies, Clim. Dyn., 9, 287–302, 1994.

    Article  Google Scholar 

  36. Nauw, J. J. and H. A. Dijkstra, The origin of low-frequency variability of double-gyre wind-driven flows, J. Mar. Res., 59, 567–597, 2001.

    Article  Google Scholar 

  37. Orlanski, I., The influence of bottom topography on the stability of jets in a baroclinic fluid. J. Atmos. Sci., 26, 1216–1232, 1969.

    Article  Google Scholar 

  38. Pedlosky, J., Geophysical Fluid Dynamics 2nd ed., 710 pp., Springer-Verlag, New York, 1987.

    Google Scholar 

  39. Pedlosky, J., The dynamics of the oceanic subtropical gyres, Science, 248, 316–322, 1990.

    Article  Google Scholar 

  40. Pierce, D. W., T. P. Barnett, N. Schneider, R. Saravanan, D. Dommenget, and M. Latif, The role of ocean dynamics in producing decadal climate variability in the North Pacific, Clim. Dyn., 18, 51–70, 2001.

    Article  Google Scholar 

  41. Primeau, F., Multiple equilibria and low-frequency variability of the wind-driven ocean circulation, J. Phys. Oceanogr., 32, 2236–2256, 2002.

    Article  Google Scholar 

  42. Procaccia, I., Complex or just complicated?, Nature, 333, 498–499, 1988.

    Article  Google Scholar 

  43. Qiu, B., Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback, J. Phys. Oceanogr., 33, 2465–2482, 2003.

    Article  Google Scholar 

  44. Qiu, B. and T. M. Joyce, Interannual variability in the mid- and low-latitude western North Pacific, J. Phys. Oceanogr., 22, 1062–1079, 1992.

    Article  Google Scholar 

  45. Rhines, P. B. and W. R. Young, A theory of the wind-driven circulation I. Mid-ocean gyres, J. Mar. Res., 40 (Suppl.), 559–596, 1982.

    Google Scholar 

  46. Sakamoto, T., On discontinuities in the Sverdrup interior, J. Phys. Oceanogr., 29, 2457–2461, 1999.

    Article  Google Scholar 

  47. Sakamoto, T., Determination of wind-driven ocean circulation inside closed characteristics, Geophys. Astrophys. Fluid Dyn., 94, 151–176, 2001.

    Article  Google Scholar 

  48. Sakamoto, T., Western boundary current separation caused by a deep countercurrent, Geophys. Astrophys. Fluid Dyn., 96, 179–199, 2002.

    Article  Google Scholar 

  49. Sakamoto, T., A route to Eulerian chaos in a two-layer wind-driven ocean, Fluid Dyn. Res., 34, 117–134, 2004.

    Article  Google Scholar 

  50. Schneider, N., A. J. Miller, and D. W. Pierce, Anatomy of North Pacific decadal variability, J. Clim., 15, 586–605, 2002.

    Article  Google Scholar 

  51. Simonnet, E. and H. A. Dijkstra, Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation, J. Phys. Oceanogr., 32, 1747–1762, 2002.

    Article  Google Scholar 

  52. Sura, P., F. Lunkeit, and K. Fraedrich, Decadal variability in a simplified wind-driven ocean model, J. Phys. Oceanogr., 30, 1917–1930, 2000.

    Article  Google Scholar 

  53. Thompson, L. and C. A. Ladd, The response of the North Pacific Ocean to decadal variability in atmospheric forcing: Wind versus buoyancy forcing, J. Phys. Oceanogr., 34, 1373–1386, 2004.

    Article  Google Scholar 

  54. Trenberth, K. E. and J. W. Hurrell, Decadal atmosphere-ocean variations in the Pacific, Clim. Dyn., 9, 303–319, 1994.

    Article  Google Scholar 

  55. van der Vaart, P. C. F., H. M. Schuttelaars, D. Calvete, and H. A. Dijkstra, Instability of time-dependent wind-driven ocean gyres, Phys. Fluids, 14, 3601–3615, 2002.

    Article  Google Scholar 

  56. Willmott, A. J., A note on the steepening of long Rossby waves, Deep-Sea Res., 32, 613–617, 1985.

    Article  Google Scholar 

  57. Young, W. R., Baroclinic theories of the wind driven circulation, in General Circulation of the Ocean, edited by D. I. Abarbanel and W. R. Young, 291 pp., Springer-Verlag, New York, 1987.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Sakamoto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sakamoto, T. Low-frequency variability of a two-layer ocean forced by periodic winds. Earth Planet Sp 58, 1203–1212 (2006). https://doi.org/10.1186/BF03352011

Download citation

Key words

  • Ocean circulation
  • dynamics
  • variability
  • subharmonics
  • devil’s staircase
  • route to chaos