Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Simulation study on nonlinear frequency shift of narrow band whistler-mode waves in a homogeneous magnetic field

Abstract

We study frequency variation of a coherent whistler-mode wave in a homogeneous magnetic field by a selfconsistent simulation model. Simulation results show that an injected whistler-mode wave packet grows due to an instability driven by temperature anisotropy and the amplified wave packet triggers emissions with frequency shift during its propagation. We clarify that the resonant currents JE and JB due to the nonlinear wave-particle interaction play significant roles in both wave growth and frequency variation. Based on the simulation results, we show that the range of the frequency shift in a homogeneous system is quantitatively estimated by the trapping frequency VT of trapped electrons; in a case that the original frequency of the wave packet is 0.62Ωe and VT=4.05 × 10−2c, the lower and upper frequencies are estimated to be 0.565Ωe and 0.685Ωe, respectively. The results of the present study reveal that the role of nonlinear trapping is significant in the elementary process of VLF triggered emissions in the equatorial region of the magnetosphere.

References

  1. Bujarbarua, S., M. Nambu, B. J. Saikia, M. Eda, and J. I. Sakai, Numerical simulation and theory of generation of electromagnetic waves in the presence of whistler turbulence, Phys. Plasmas, 5(6), 2244–2251, 1998.

    Article  Google Scholar 

  2. Buneman, O., TRISTAN, Computer Space Plasma Physics: Simulation Techniques and Softwares, edited by H. Matsumoto and Y. Omura, pp. 67–84, Terra Scientific Publishing Company, Tokyo, Japan, 1993.

  3. Hashimoto, K., H. Matsumoto, Y. Serizawa, and I. Kimura, Computer simulation of whistler mode wave-particle interactions using a freeboundary encounter model, J. Geophys. Res., 88, 3072–3078, 1

    Article  Google Scholar 

  4. Helliwell, R. A., Controlled stimulation of VLF emissions from Siple station, Antarctica, Radio Sci., 18, 801–814, 1983.

    Article  Google Scholar 

  5. Helliwell, R. A. and J. P. Katsufrakis, VLF wave injection into the magnetosphere from Siple station, Antarctica, J. Geophys. Res., 79, 2511–2518, 1974.

    Article  Google Scholar 

  6. Katoh, Y. and Y. Omura, Acceleration of relativistic electrons due to resonant scattering by whistler mode waves generated by temperature anisotropy in the inner magnetosphere, J. Geophys. Res., 109, A12214, doi:10.1029/2004JA010654, 2004.

    Article  Google Scholar 

  7. Katoh, Y., T. Ono, and M. Iizima, Numerical Simulation of resonant scattering of energetic electrons in the outer radiation belt, Earth Planets Space, 57, 117–124, 2

    Article  Google Scholar 

  8. Katoh, Y., T. Ono, and M. Iizima, A numerical study on the resonant scattering process of relativistic electrons via whistler-mode waves in the outer radiation belt, in The Inner Magnetosphere: Physics and Modeling, edited by T. Pulkkinen, R. H. W. Friedel, and N. Tsyganenko, Geophysical Monograph Series, Vol. 155, p. 33–39, 2005b.

    Article  Google Scholar 

  9. Matsumoto, H., Nonlinear whistler-mode interaction and triggered emissions in the magnetosphere: a review, in Wave Instabilities in Space Plasma, edited by P. J. Palmadesso and K. Papadopulos, pp. 163–190, D. Reidel Pub. Co., 1979.

    Google Scholar 

  10. Matsumoto, H., Coherent nonlinear effects on electromagnetic waveparticle interactions, Space Science Reviews, 42, 429–448, 1985.

    Article  Google Scholar 

  11. Matsumoto, H., K. Hashimoto, and I. Kimura, Dependence of coherent nonlinear whistler interaction on wave amplitude, J. Geophys. Res., 85, 644–652, 1980.

    Article  Google Scholar 

  12. Nunn, D., A self-consistent theory of triggered VLF emissions, Planet. Space Sci., 22, 349–378, 1974.

    Article  Google Scholar 

  13. Nunn, D., A. Demekhov, V. Trakhtengerts, and M. J. Rycroft, VLF emission triggering by a highly anisotropic energetic electron plasma, Annales Geophysicae, 21, 481–492, 2003.

    Article  Google Scholar 

  14. Nunn, D., M. J. Rycroft, and V. Trakhtengerts, A parametric study of the numerical simulations of triggered VLF emissions, Annales Geophysicae, 23, 3655–3666, 2005.

    Article  Google Scholar 

  15. Omura, Y. and H. Matsumoto, Computer simulations of basic processes of coherent whistler wave-particle interactions in the magnetosphere, J. Geophys. Res., 87(A6), 4435–4444, 1982.

    Article  Google Scholar 

  16. Omura, Y. and H. Matsumoto, Simulation study of frequency variations of VLF triggered emissions in a homogeneous field, J. Geomag. Geoelectr., 37, 829–837, 1985.

    Article  Google Scholar 

  17. Omura, Y., D. Nunn, H. Matsumoto, and M. J. Rycroft, A review of observational, theoretical and numerical studies of VLF triggered emissions, J. Atmos. Terr. Phys., 53, 351–368, 1991.

    Article  Google Scholar 

  18. Singh, K., R. P. Singh, and O. E. Ferencz, Simulation of whistler mode propagation for low latitude stations, Earth Planets Space, 56, 979–987, 2004.

    Article  Google Scholar 

  19. Trakhtengerts, V. Y., A. G. Demekhov, Y. Hobara, and M. Hayakawa, Phase-bunching effects in triggered VLF emissions: Antenna effect, J. Geophys. Res., 108(A4), 1160, doi:10.1029/2002JA009415, 2003.

    Article  Google Scholar 

  20. Umeda, T., Y. Omura, and H. Matsumoto, An improved masking method for absorbing boundaries in electromagnetic particle simulations, Comput. Phys. Commun., 137, 286–299, 2001.

    Article  Google Scholar 

  21. Vomvoridis, J. L. and J. Denavit, Nonlinear evolution of a monochromatic whistler wave in a nonuniform magnetic field, Phys. Fluids, 23, 174–183, 1980.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuto Katoh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katoh, Y., Omura, Y. Simulation study on nonlinear frequency shift of narrow band whistler-mode waves in a homogeneous magnetic field. Earth Planet Sp 58, 1219–1225 (2006). https://doi.org/10.1186/BF03352013

Download citation

Key words

  • Nonlinear trapping
  • whistler-mode waves
  • cyclotron resonance
  • particle simulation