Skip to main content

Seismic velocity variations on the San Andreas fault caused by the 2004 M6 Parkfield Earthquake and their implications

Abstract

Repeated earthquakes and explosions recorded at the San Andreas fault (SAF) near Parkfield before and after the 2004 M6 Parkfield earthquake show large seismic velocity variations within an approximately 200- m-wide zone along the fault to depths of approximately 6 km. The seismic arrays were co-sited in the two experiments and located in the middle of a high-slip part of the surface rupture. Waveform cross-correlations of microearthquakes recorded in 2002 and subsequent repeated events recorded a week after the 2004 M6 mainshock show a peak of an approximately 2.5% decrease in seismic velocity at stations within the fault zone, most likely due to the co-seismic damage of fault-zone rocks during dynamic rupture of this earthquake. The damage zone is not symmetric; instead, it extends farther on the southwest side of the main fault trace. Seismic velocities within the fault zone measured for later repeated aftershocks in the following 3–4 months show an approximate 1.2% increase at seismogenic depths, indicating that the rock damaged in the mainshock recovers rigidity—or heals—through time. The healing rate was not constant but was largest in the earliest post-mainshock stage. The magnitude of fault damage and healing varies across and along the rupture zone, indicating that the greater damage was inflicted and thus greater healing is observed in regions with larger slip in the mainshock. Observations of rock damage during the mainshock and healing soon thereafter are consistent with our interpretation of the low-velocity waveguide on the SAF being at least partially softened in the 2004 M6 mainshock, with additional cumulative effects due to recurrent rupture.

References

  • Aki, K., Asperities, barriers, characteristic earthquakes, and strong motion prediction, J. Geophys. Res., 89, 5867–5872, 1984.

    Article  Google Scholar 

  • Andrews, D. J., Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307, dio:10.1029. 2005.

    Google Scholar 

  • Angevine, C. L., D. L. Turcotte, and M. D. Furnish, Pressure solution lithification as a mechanism for the stick-slip behavior of faults, Tectonics, 1, 151–160, 1982.

    Article  Google Scholar 

  • Baisch. S. and G. H. R. Bokelmann, Seismic waveform attributes before and after the Loma Prieta earthquake: scattering change near the earthquake and temporal recovery, J. Geophys. Res., 106, 16,323–16,337, 2001.

    Article  Google Scholar 

  • Ben-Zion, Y. and P. Malin, San Andreas fault zone head waves near Parkfield, California, Science, 251, 1592–1594, 1991.

    Article  Google Scholar 

  • Beroza, G. C., A. T. Cole, and W. L. Ellsworth, Stability of coda wave attenuation during the Loma Prieta, California, earthquake sequence, J. Geophys. Res., 100, 3977–3987, 1995.

    Article  Google Scholar 

  • Blanpied, M. L., D. A. Lockner, and J. D. Byerlee, An earthquake mechanism based on rapid sealing of faults, Nature, 359, 574–576, 1992.

    Article  Google Scholar 

  • Blanpied, M. L., C. J. Marone, D. A. Lockner, J. D. Byerlee, and D. P. King, Quantitative measure of the variations in fault rheology due to fluid-rock interactions, J. Geophys. Res., 103, 771–786, 1998.

    Google Scholar 

  • Boettcher, M, S. and C. Marone, Effects of normal stress variation on the strength and stability of creeping faults, J. Geophys. Res., 109, B03406, doi:10.1029/2003JB002824, 2004.

    Google Scholar 

  • Byerlee, J., Friction, overpressure and fault-normal compression, Geophys. Res. Lett., 17, 2109–2112, 1990.

    Article  Google Scholar 

  • Chester, F. M., J. P. Evans, and R. L. Biegel, Internal structure and weakening mechanisms of the San Andreas fault, J. Geophys. Res., 98, 771–786, 1993.

    Article  Google Scholar 

  • Cochran, S. E., J. E. Vidale, and Y. G. Li, Near-fault anisotropy following the Hector Mine earthquake, J. Geophys. Res., 108, B9, 2436–2447, ESE 11, 2003.

    Article  Google Scholar 

  • Das, S. and K. Aki, Fault plane with barriers: A versatile earthquake model, J. Geophys. Res., 82, 5658–5670, 1977.

    Article  Google Scholar 

  • Dieterich, J. H., Time-dependent friction in rocks, J. Geophys. Res., 77, 3690–3697, 1972.

    Article  Google Scholar 

  • Dieterich, J. H., Time-dependent friction and the mechanics of strike-slip, Pure Appl. Geophys., 116, 790–806, 1978.

    Article  Google Scholar 

  • Dodge, D. and G. C. Beroza, Source array analysis of coda waves near the 1989 Loma Prieta, California mainshock: Implications for the mechanism of coseismic velocity changes, J. Geophys. Res., 102, 24,437–24,458, 1997.

    Article  Google Scholar 

  • Eberhart-Phillips, D. and A. J. Michael, Three-dimensional velocity structure, seismicity, and fault structure in Parkfield region, central California, J. Geophys. Res., 98, 15737–15758, 1993.

    Article  Google Scholar 

  • Ellsworth, W. L., A. T. Cole, G. C. Beroza, and M. C. Verwoerd, Changes in crustal wave velocity association with the 1989 Loma Prieta, California earthquake, EOS, 73, 360, 1992.

    Article  Google Scholar 

  • Fialko, Y., D. Sandwell, D. Agnew, M. Simons, P. Shearer, and B. Minster, Deformations on nearby faults induced by the 1999 Hector Mine earthquake, Science, 297, 1858–1862, 2002.

    Article  Google Scholar 

  • Garbin, H. D. and L. Knopoff, Elastic moduli of a medium with liquidfilled cracks, Quart. Appl. Math. October, 32, 301–303, 1975.

    Google Scholar 

  • Graves, R. W., Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seismol. Soc. Am., 86, 1091–1106, 1996.

    Google Scholar 

  • Hickman, S. H. and B. Evans, Growth of grain contacts in halite by solution-transfer: Implications for diagenesis, lithification, and strength recovery, in Fault Mechanics and Transport Properties of Rocks, pp. 253–280, Academic, San Diego, Calif., 1992.

    Chapter  Google Scholar 

  • Hickman, S. H., M. D. Zoback, and W. L. Ellsworth, Structure and Composition of the San Andreas fault zone at Parkfield: Initial results from SAFOD Phase 1 and 2, EOS, Trans. Am. Geophys, Union, 83(47), 237, 2005.

    Google Scholar 

  • Ikuta, R. and K. Yamaoka, Temporal variation in the shear wave anisotropy detected using the accurately controlled routinely operated signal system (ACROSS), J. Geophys. Res., 109, B09305, doi:10.1029/2003JB002901, 2004.

    Google Scholar 

  • Kanamori, H., Mechanics of earthquakes, Ann. Rev. Earth Planet. Sci., 22, 207–237, 1994.

    Article  Google Scholar 

  • Karageorgi, E., R. Clymer, and T. McEvilly, Seismological studies at Parkfield: II: Search for temporal variations in wave propagation using vibroseis, Bull. Seismol. Soc. Am., 82, 1388–1415, 1992.

    Google Scholar 

  • Karageorgi, E. D., T. V. McEvilly, and R. W. Clymer, Seismological studies at Parkfield: IV: Variations in controlled-source waveform parameters and their correlation with seismicity, 1987 to 1995, Bull. Seismol. Soc. Am., 87, 39–49, 1997.

    Google Scholar 

  • Korneev, V. A., T. V. McEvilly, and E. D. Karageorgi, Seismological studies at Parkfield VIII: Modeling the observed travel-time changes, Bull. Seismol. Soc. Am., 90, 702–708, 2000.

    Article  Google Scholar 

  • Korneev, V. A., R. M. Nadeau, and T. V. McEvilly, Seismological studies at Parkfield IX: Fault-zone imaging using guided wave attenuation, Bull. Seismol. Soc. Am., 80, 1245–1271, 2003.

    Google Scholar 

  • Langbein, J., R. Bocherdt, D. Dreger, J. Fletcher, J. L. Hardbeck, M. Hellweg, C. Ji, M. Johnston, J. R. Murray, R. Nadeau, M. J. Rymer, and J. A. Trieman, Preliminary report on the 28 September 2004, M 6.0 Parkfield, California earthquake, Seismol. Res. Lett., 76, No. 1, 10–26, 2005.

    Article  Google Scholar 

  • Lees, J. M. and P. E. Malin, Tomographic images of P wave velocity variation at Parkfield, California, J. Geophys. Res., 95, 21,793–21,804, 1990.

    Article  Google Scholar 

  • Li, Y. G. and J. E. Vidale, Healing of the shallow fault zone from 1994–1998 after the 1992 M7.5 Landers, California, earthquake, Geophys. Res. Lett., 28, 2999–3002, 2001.

    Article  Google Scholar 

  • Li, Y. G., P. C. Leary, K. Aki, and P. E. Malin, Seismic trapped modes in Oroville and San Andreas fault zones, Science, 249, 763–766, 1990.

    Article  Google Scholar 

  • Li, Y. G., W. L. Ellsworth, C. H. Thurber, P. E. Malin, and K. Aki, Observations of fault-zone trapped waves excited by explosions at the San Andreas fault, central California, Bull. Seismol. Soc. Am., 87, 210–221, 1997.

    Google Scholar 

  • Li, Y. G., J. E. Vidale, K. Aki, F. Xu, and T. Burdette, Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers, California, earthquake, Science, 279, 217–219, 1998.

    Article  Google Scholar 

  • Li, Y. G., J. E. Vidale, S. M. Day, D. D. Oglesby, and E. Cochran, Postseismic fault healing on the 1999 M7.1 Hector Mine, California earthquake, Bull. Seismol. Soc. Am., 93, 854–869, 2003.

    Article  Google Scholar 

  • Li, Y. G., J. E. Vidale, and S. E. Cochran, Low-velocity damaged structure on the San Andreas fault at Parkfield from fault-zone trapped waves, Geophys. Res. Lett., 31, L12S06, pp. 1–5, 2004.

    Article  Google Scholar 

  • Li, Y. G., P. Chen, E. S. Cochran, J. E. Vidale, and T. Burdette, Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M6 Parkfield earthquake, Special issue for Parkfield M6 earthquake,Bull. Seismol. Soc. Am., 96, pp. S349–S363, doi: 10.1785/0120050803, 2006.

    Article  Google Scholar 

  • Lockner, D. A., H. Naka, H. Tanaka, H. Ito, and R. Ikeda, Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake, in Proceedings of the InternationalWorkshop on the Nojima Fault Core and Borehole Data Analysis, Tsukuba, Japan, Nov 22–23, 1999, USGS Open file Report 00-129, edited by H. Ito, K. Fujimoto, H. Tanaka, and D. A. Lockner, 147–152, 2000.

  • Marone, C., The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle, Nature, 391, 69–72, 1998.

    Article  Google Scholar 

  • Marone, C., J. E. Vidale, and W. L. Ellsworth, Fault healing inferred from time dependent variations in source properties of repeating earthquakes, Geophys. Res. Lett., 22, 3095–3098, 1995.

    Article  Google Scholar 

  • Massonnet, D., W. Thatcher, and H. Vadon, Detection of postseismic faultzone collapse following the Landers earthquake, Nature, 382, 612–616, 1996.

    Article  Google Scholar 

  • Michelini, A. and T. V. McEvilly, Seismological studies at Parkfield, I, Simultaneous inversion for velocity structure and hypocenters using cubic B-splines parameterization, Bull. Seismol. Soc. Am., 81, 524–552, 1991.

    Google Scholar 

  • Mooney, W. D. and A. Ginzburg, Seismic measurements of the internal properties of fault zones, Pure Appl. Geophys., 124, 141–157, 1986.

    Article  Google Scholar 

  • Niu, F. L., P. G. Silver, R. M. Nadeau, and T. V. McEvilly, Stress-induced migration of seismic scatters associated with 1993 Parkfield aseismic transient event, Nature, 426, 544–548, 2003.

    Article  Google Scholar 

  • Nur, A., Dilatancy, Pore fluid, and premonitory variations of ts/tp travel times, Bull. Seismol. Soc. Am., 62, 1217–1222, 1972.

    Google Scholar 

  • O’Connell, R. J. and B. Budiansky, Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79, 5412–5426, 1974.

    Article  Google Scholar 

  • Olsen, M., C. H. Scholz, and A. Leger, Healing and sealing of a simulated fault gouge under hydrothermal conditions for fault healing, J. Geophys. Res., 103, 7421–7430, 1998.

    Article  Google Scholar 

  • Rice, J. R., The mechanics of earthquake rupture, in Physics of the Earth’s Interior, edited by A. M. Dziewonski and B. Boschi, North-Holland, Amsterdam, pp. 555–649, 1980.

    Google Scholar 

  • Rice, J. R., Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T.-F. Wong, pp. 475–503, Academic, San Diego, Calif., 1992.

    Chapter  Google Scholar 

  • Richardson, E. and C. Marone, Effects of normal stress vibrations on frictional healing, J. Geophys. Res., 104, 28,859–28,878, 1999.

    Article  Google Scholar 

  • Rubinstein, J. and G. C. Beroza, Depth constrain on nonlinear strong ground motion from the 2004 Parkfield earthquake, Seismol. Res. Lett., 32, L14313, doi: 10.1029/2005GL023189, 2005 (submitted).

    Google Scholar 

  • Schaff, D. P. and G. C. Beroza, Coseismic and postseismic velocity changes measured by repeating earthquakes, J. Geophys. Res., 109, B10302, doi: 10.1029/2004JB003011, 2004.

    Article  Google Scholar 

  • Scholz, C. H., The Mechanics of Earthquakes and Faulting, Cambridge Univ. Press, New York, 1990.

    Google Scholar 

  • Sibson, R. H., Fault rocks and fault mechanisms, J. Geol. Soc. London, 133, 191–213.

  • Snieder, R. and M. Vrijlandt, Constraining Relative Source Locations with Coda Wave Interferometry: Theory and Application to Earthquake Doublets in the Hayward Fault, California, J. Geophys. Res., 110, B04301, 10.1029/2004JB003317, 2005.

  • Tadokoro, K., M. Ando, and Y. Umeda (1999). S wave splitting in the aftershock region of the 1995 Hyogo-ken Nanbu earthquake, J. Geophys. Res., 104, 981–991, 1997.

    Article  Google Scholar 

  • Thurber, C. H., S. Roecker, W. Ellsworth, Y. Chen, W. Lutter, and R. Sessions, Two-dimensional seismic image of the San Andreas fault in the northern Gabilan Range, central California: Evidence for fluids in the fault zone, Geophys. Res. Lett., 24, 1591–1594, 1997.

    Article  Google Scholar 

  • Unsworth, M., P. Malin, G. Egbert, and J. Booker, Internal structure of the San Andreas fault at Parkfield, CA, Geology, 356–362, 1997.

    Google Scholar 

  • Vidale, J. E. and Y. G. Li, Damage to the shallow Landers fault from the nearby Hector Mine earthquake, Nature, 421, 524–526, 2003.

    Article  Google Scholar 

  • Vidale, J. E., W. L. Ellsworth, A. Cole, and C. Marone, Rupture variation with recurrence interval in eighteen cycles of a small earthquake, Nature, 368, 624–626, 1994.

    Article  Google Scholar 

  • Yasuhara, H., C. Marone, and D. Ellsworth, Fault zone restrengthening and frictional healing: The role of pressure solution, J. Geophys. Res., 110, B06310, doi:10.1029/2004JB003327, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gang Li.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Li, YG., Chen, P., Cochran, E.S. et al. Seismic velocity variations on the San Andreas fault caused by the 2004 M6 Parkfield Earthquake and their implications. Earth Planet Sp 59, 21–31 (2007). https://doi.org/10.1186/BF03352018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352018

Key words

  • Parkfield earthquake
  • temporal velocity variation
  • rock damage and healing