Skip to main content

Surface wave propagation in a fluid saturated incompressible porous half-space lying under two layers of different liquids

Abstract

A study of surface wave propagation in a fluid saturated incompressible porous half-space lying under a double-layer consisting of non-homogeneous and homogeneous liquids is presented. The frequency equation connecting the phase velocity with wave number is derived. Special cases as: (i) Rayleigh type surface waves in an incompressible poro-elastic half-space lying under a uniform layer of a homogeneous liquid, (ii) Rayleigh type surface waves in an incompressible poro-elastic half-space lying under a uniform layer of a non-homogeneous liquid and (iii) Rayleigh type surface waves propagating along the free surface of a fluid saturated incompressible porous elastic half-space, are investigated. Numerical results with graphical presentations of the variations of phase velocity with wave number for different cases are also included.

References

  • Achenbach, J. D., Wave Propagation in Elastic Solids, North-Holland Publishing Company, Amsterdam, 1976.

    Google Scholar 

  • Biot, M. A., General Theory of Three dimensional consolidation, J. Appl. Phys., 12, 155–161, 1941.

    Article  Google Scholar 

  • Biot, M. A., Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid-I. Low Frequency Range, J. Acout. Soc. Am., 28, 168–178, 1956a.

    Article  Google Scholar 

  • Biot, M. A., Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid-II. Higher Frequency Range, J. Acout. Soc. Am., 28, 179–191, 1956b.

    Article  Google Scholar 

  • Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 1482–1498, 1962.

    Article  Google Scholar 

  • Bowen, R. M., Incompressible Porous Media Models by use of the Theory of Mixtures, Int. J. Engg. Sci., 18, 1129–1148, 1980.

    Article  Google Scholar 

  • de Boer, R., Highlights in the historical development of the porous media theory: Toward a consistent macroscopic theory, Appl. Mech. Rev., 49, 201–262, 1996.

    Article  Google Scholar 

  • de Boer, R., Contemporary progress in porous media theory, Appl. Mech. Rev., 53, 323–370, 2000a.

    Article  Google Scholar 

  • de Boer, R., Theory of porous media, Springer-Verleg, New York, 2000b.

    Book  Google Scholar 

  • de Boer, R. and W. Ehlers, A Historical Review of the Formulation of Porous Media Theories, Acta Mechanica, 74, 1–8, 1988.

    Article  Google Scholar 

  • de Boer, R. and W. Ehlers, The Development of the Concept of Effective Stress, Acta Mechanica, 83, 77–92, 1990a.

    Article  Google Scholar 

  • de Boer, R. and W. Ehlers, Uplift, Friction and Capillarity—Three Fundamental Effects for Liquid-saturated Porous Solids, Int. J. Solid Structures, 26, 43–57, 1990b.

    Article  Google Scholar 

  • de Boer, R. and Z. Liu, Growth and decay of acceleration waves in incompressible saturated poroelastic solids, ZAMM, 76, 341–347, 1996.

    Article  Google Scholar 

  • de Boer, R., W. Ehlers, and Z. Liu, One-dimensional Transient Wave Propagation in a Fluid-saturated Incompressible Porous Media, Arch. App. Mech., 63, 59–72, 1993.

    Article  Google Scholar 

  • Edelman, I., Surface Waves at Vacuum/Porous Medium Interface: Low Frequency Range, Wave Motion, 39, 111–127, 2004.

    Article  Google Scholar 

  • Ehlers, W., Compressible, incompressible and hybrid two-phase models in porous theories, ASME; AMD, 158, 25–38, 1993.

    Google Scholar 

  • Ewing, W. M., W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media, McGraw-Hill Book Co., 1957.

    Google Scholar 

  • Fillunger, P., Der Auftrieb in Talsperren. Osterr. Wochenschrift fur den offentl. Baudienst. I. Teil 532–552, II. Teil 552–556, III. Teil 567–570, 1933.

    Google Scholar 

  • Kumar, R. and B. S. Hundal, A study of Spherical and Cylindrical Wave Propagation in a Non-Homogeneous Fluid Saturated Incompressible Porous Medium by Method of Characteristics, in Current Trends in Industrial and Applied Mathematics, edited by P. Manchanda et al., Anamya Publisher, New Delhi, 181–194, 2002.

    Google Scholar 

  • Kumar, R. and B. S. Hundal, Wave Propagation in a Fluid-Saturated Incompressible Porous Medium, Indian J. Pure and Applied Math., 4, 651–665, 2003a.

    Google Scholar 

  • Kumar, R. and B. S. Hundal, One-Dimensional Wave Propagation in a Non-Homogeneous Fluid-Saturated Incompressible Porous Medium, Bull. Allahabad Math. Soc., 18, 1–13, 2003b.

    Google Scholar 

  • Kumar, R. and B. S. Hundal, Effect of Non-homogeneity on One-dimensional Wave Propagation in a Fluid-Saturated Incompressible Porous Medium, Bull. Cal. Math. Soc., 96, 179–188, 2004a.

    Google Scholar 

  • Kumar, R. and B. S. Hundal, Symmetric Wave Propagation in a Fluid-Saturated Incompressible Porous Medium, J. Sound and Vibration, 96, 179–188, 2004b.

    Google Scholar 

  • Kumar, R. and A. Miglani, Effect of Pore Alignment on Surface Wave Propagation in a Liquid-Saturated Porous Layer over a Liquid-Saturated Porous Half-Space with Loosely Bonded Interface, J. Phys. Earth, 44, 153–172, 1996.

    Article  Google Scholar 

  • Kumar, R., A. Miglani, and N. R. Garag, Surface Wave Propagation in a Double Liquid Layer over a Liquid-Saturated Porous Half-Space, Sadhana, 27, 643–655, 2002.

    Article  Google Scholar 

  • Liu, K. and Y. Liu, Propagation Characteristics of Rayleigh Waves in Orthotropic Fluid-Saturated Porous Media, J. Sound and Vibration, 271, 1–13, 2004.

    Article  Google Scholar 

  • Liu, Z., Propagation and Evolution of Wave Fronts in Two-Phase Porous Media, TIPM, 34, 209–225, 1999.

    Google Scholar 

  • Liu, Z. and R. de Boer, Plane waves in a semi-infinite fluid saturated porous medium, TIPM, 16, 147–173 1994.

    Google Scholar 

  • Liu, Z. and R. de Boer, Propagation of acceleration waves in incompressible saturated porous solids, TIPM, 21, 163–173, 1995.

    Google Scholar 

  • Liu, Z. and R. de Boer, Dispersion and Attenuation of Surface Waves in a Fluid-saturated Porous Medium, TIPM, 29, 207–223, 1997.

    Google Scholar 

  • von Terzaghi, K., Die Berechnug der Durchlassigkeit des Tones aus dem Verlauf der hydromechanischen Spannungserscheinungen, Sitzungsber. Akad. Wiss. (Wien), Math.-Naturwiss. Kl., Abt. Iia, 132, 125–138, 1923.

    Google Scholar 

  • von Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage, 399 pp., Leipzig-wien: Franz Deuticke, 1925.

    Google Scholar 

  • Yan, Bo, Z. Liu, and X. Zhang, Finite Element Analysis of Wave Propagation in a Fluid-saturated Porous Media, Applied Mathematics and Mechanics, 20, 1331–1341, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Hundal.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Kumar, R., Hundal, B.S. Surface wave propagation in a fluid saturated incompressible porous half-space lying under two layers of different liquids. Earth Planet Sp 59, 929–936 (2007). https://doi.org/10.1186/BF03352031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352031

Key words

  • Incompressible porous medium
  • volume fractions
  • frequency equation
  • phase velocity
  • wave number