Skip to main content

Simulations of superrotation using a GCM for Venus’ middle atmosphere

Abstract

A superrotation is simulated in a T10L100 general circulation model for Venus’ middle atmosphere (VMAGCM), in which the radiative effects of aerosols are calculated. The simulation in a domain of 30–100 km is conducted under the condition of a bottom zonal flow with a velocity of 50 m s−1 at the equator. Thermal tides contribute to the maintenance of the cloud-top superrotation together with meridional circulation and vertically propagating gravity waves. The meridional circulation and wave activity are sensitive to the vertical eddy diffusion. Although the equatorial zonal flow has a velocity of about 70 m s−1 when the vertical eddy diffusion coefficient (KV) is set at 5.0 m s−2, it has a velocity of <100 m s−1 when KV = 2.5 m s−2. The fully developed equatorial jet for the small KV case is enhanced at 65 km by small-scale gravity waves emitted from the cloud top.

References

  • Andrews, D. G., J. R. Holton, and C. B. Leovy, Middle Atmosphere Dynamics, 489 pp., Academic Press, San Diego, 1987.

    Google Scholar 

  • Crisp, D., Radiative forcing of the Venus mesosphere I. Solar fluxes and heating rates, Icarus, 67, 484–514, 1986.

    Article  Google Scholar 

  • Del Genio, A. D. and W. B. Rossow, Planetary-scale wave and the cyclic nature of cloud top dynamics on Venus, J. Atmos. Sci., 47, 293–318, 1990.

    Article  Google Scholar 

  • Elson, L. S., Solar related waves in the Venusian atmosphere from the cloud tops to 100 km, J. Atmos. Sci., 40, 1535–1551, 1983.

    Article  Google Scholar 

  • Fels, S. B. and R. S. Lindzen, The interaction of thermally excited gravity waves with mean flows, Geophys. Fluid Dynamics, 6, 149–191, 1974.

    Article  Google Scholar 

  • Gierasch, P. J., Meridional circulation and the maintenance of the Venus atmosphere rotation, J. Atmos. Sci., 32, 1038–1044, 1975.

    Article  Google Scholar 

  • Imamura, T. and G. L. Hashimoto, Venus cloud formation in the meridional circulation, J. Geophys. Res., 103, 31349–31366, 1998.

    Article  Google Scholar 

  • Joseph, J. H., W. J. Wiscombe, and J. H. Weinman, The Delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci., 33, 2452–2459, 1976.

    Article  Google Scholar 

  • Kuroda, T., N. Hashimoto, D. Sakai, and M. Takahashi, Simulation of the Martian atmosphere using a CCSR/NIES AGCM, J. Meteor. Soc. Japan, 83, 1–15, 2005.

    Article  Google Scholar 

  • Leovy, C., Control of the homopause level, Icarus, 50, 311–321, 1982.

    Article  Google Scholar 

  • Leovy, C. and Y. Mintz, Numerical simulation of the atmospheric circulation and climate of Mars, J. Atmos. Sci., 26, 1167–1190, 1969.

    Article  Google Scholar 

  • Lindzen, R. S., Turbulence and stress due to gravity waves and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.

    Article  Google Scholar 

  • Matsuda, Y., Dynamics of the four-day circulation in the Venus atmosphere, J. Meteor. Soc. Japan, 58, 443–470, 1980.

    Google Scholar 

  • Matsuda, Y., A further study of dynamics of the four-day circulation in the Venus atmosphere, J. Meteor. Soc. Japan, 60, 245–254, 1982.

    Google Scholar 

  • Matsuda, Y. and T. Matsuno, 4-day circulation in the Venus atmosphere, Kagaku, 50, 285–293, 1980 (in Japanese).

    Google Scholar 

  • Newman, M. and C. B. Leovy, Maintenance of strong rotational winds in Venus’ middle atmosphere by thermal tides, Science, 257, 647–650, 1992.

    Article  Google Scholar 

  • Newman, M., G. Schubert, A. J. Kliore, and I. R. Patel, Zonal winds in the middle atmosphere of Venus from Pioneer Venus radio occultation data, J. Atmos. Sci., 41, 1901–1913, 1984.

    Article  Google Scholar 

  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, Development of an atmospheric general circulation model, in Climate System Dynamics and Modelling, vol. I-3, edited by T. Matsuno, pp. 1–27, Cent. for Clim. Syst. Res., Univ. of Tokyo, Tokyo, 1995.

    Google Scholar 

  • Pechmann, J. B. and A. P. Ingersoll, Thermal tides in the atmosphere of Venus: Comparison of model results with observations, J. Atmos. Sci., 41, 3290–3313, 1984.

    Article  Google Scholar 

  • Rossow, W. B., A. D. Del Genio, and T. Eichler, Cloud-tracked winds from Pioneer Venus OCPP images, J. Atmos. Sci., 47, 2053–2084, 1990.

    Article  Google Scholar 

  • Schofield, J. T. and F. W. Taylor, Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus, Quart. J. R. Met. Soc., 109, 57–80, 1983.

    Article  Google Scholar 

  • Schubert, G., C. Covey, A. D. Del Genio, L. S. Elson, G. Keating, A. Seiff, R. E. Young, J. Apt, C. C. Counselman, III, A. J. Kliore, S. S. Limaye, H. E. Revercomb, L. A. Sromovsky, V. E. Suomi, F. Taylor, R. Woo, and U. von Zahn, Structure and circulation of the Venus atmosphere, J. Geophys. Res., 85, 8007–8025, 1980.

    Article  Google Scholar 

  • Seiff, A., D. B. Kirk, R. E. Young, R. C. Blanchard, J. T. Findlay, G. M. Kelly, and S. C. Sommer, Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations: Results from the four Pioneer Venus probes, J. Geophys. Res., 85, 7903–7933, 1980.

    Article  Google Scholar 

  • Takagi, M. and Y. Matsuda, Sensitivity of thermal tides in the Venus atmosphere to basic zonal flow and Newtonian cooling, Geophys. Res. Lett., 32, L02203, doi:10.1029/2004GL022060, 2005.

    Google Scholar 

  • Takagi, M. and Y. Matsuda, Dynamical effect of thermal tides in the lower Venus atmosphere, Geophys. Res. Lett., 33, L13102, doi:10. 1029/2006GL026168, 2006.

    Article  Google Scholar 

  • Woo, R. and A. Ishimaru, Eddy diffusion coefficient for the atmosphere of Venus from radio scintillation measurements, Nature, 289, 383–384, 1981.

    Article  Google Scholar 

  • Yamamoto, M. and H. Tanaka, Formation and maintenance of the 4-day circulation in the Venus middle atmosphere, J. Atoms. Sci., 54, 1472–1489, 1997.

    Article  Google Scholar 

  • Yamamoto, M. and H. Tanaka, The Venusian Y-shaped cloud pattern based on an aerosol-transport model, J. Atmos. Sci., 55, 1400–1416, 1998.

    Article  Google Scholar 

  • Yamamoto, M. and M. Takahashi, The fully developed superrotation simulated by a general circulation model of a Venus-like atmosphere, J. Atmos. Sci., 60, 561–574, 2003a.

    Article  Google Scholar 

  • Yamamoto, M. and M. Takahashi, Superrotation and equatorial waves in a T21 Venus-like AGCM, Geophys. Res. Lett., 30, doi:10.1029/2003GL016924, 2003b.

  • Yamamoto, M. and M. Takahashi, Dynamics of Venus’ superrotation: the eddy momentum transport processes newly found in a GCM, Geophys. Res. Lett., 31, doi:10.1029/2004GL019518, 2004.

  • Yamamoto, M. and M. Takahashi, An aerosol transport model based on a two-moment microphysical parameterization in the Venus middle atmosphere: model description and preliminary experiments, J. Geophys. Res., 111, doi:10.1029/2006JE002688, 2006a.

  • Yamamoto, M. and M. Takahashi, Superrotation maintained by meridional circulation and waves in a Venus-like AGCM, J. Atmos. Sci., 63, 3296–3314, 2006b.

    Article  Google Scholar 

  • Zhang, S., S. W. Bougher, and M. J. Alexander, The impact of gravity waves on the Venus thermosphere and O2 IR nightglow, J. Geophys. Res., 101, 23195–23205, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Yamamoto.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Yamamoto, M., Takahashi, M. Simulations of superrotation using a GCM for Venus’ middle atmosphere. Earth Planet Sp 59, 971–979 (2007). https://doi.org/10.1186/BF03352036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352036

Key words

  • Venus
  • superrotation
  • GCM
  • thermal tide