Skip to main content

Advertisement

Determination of ground conductivity and system parameters for optimal modeling of geomagnetically induced current flow in technological systems

Article metrics

  • 474 Accesses

  • 35 Citations

Abstract

In this work, methods to determine technological system parameters and the ground conductivity structure from different sets of geomagnetically induced current (GIC), magnetic field and geoelectric field observations are explored. The goal of the work is to enable optimal modeling of induced currents in any technological system experiencing GIC. As an additional product, the introduced methods can also be applied to utilize GIC observations in the imaging of the subsurface geological structures. Here a robust processing scheme and Occam’s inversion technique familiar from magnetotelluric (MT) studies are applied to the determination of the ground conductivity structure. The application of the methods to GIC data from the Finnish pipeline for a storm period of October 24-November 1, 2003 demonstrate that optimal system parameters and ground conductivity structure can be obtained using time series comprising only 8 days worth of data. Importantly, the obtained ground model is in agreement with models obtained in earlier MT studies. Furthermore, it is shown that although in an ideal case the magnetic field data used should be obtained from the immediate vicinity of the GIC observation site, some spatial separation (200–300 km) between the sites can be tolerated.

References

  1. Boteler, D. H., R. J. Pirjola, and H. Nevanlinna, The Effects of Geomagnetic Disturbances on Electrical Systems at the Earths Surface, Adv. Space Res., 22, 17, 1998.

  2. Brasse, H. and A. Junge, The influence of geomagnetic variations on pipelines and an application for large-scale magnetotelluric depth sounding, Journal of Geophysics, 55, 31–36, 1984.

  3. Cagniard, L., Basic theory of the magneto-telluric method of geophysical prospecting, Geophysics, 18 (3), 605–635, 1953.

  4. Constable, S., R. Parker, and C. Constable, Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52(3), 289–300, 1987.

  5. Dmitriev, V. and M. Berdichevsky, The fundamental model of magnetotelluric sounding, IEEE Proc., 67, 1034, 1979.

  6. Egbert, G. and J. Booker, Robust estimation of geomagnetic transfer functions, Geophys. J. R. Astr. Soc., 87, 173–194, 1986.

  7. Eisel, M. and G. Egbert, On the stability of magnetotelluric transfer function estimates and on the reliability of their variances, Geophys. J. Int., 144, 65–82, 2001.

  8. Hejda, P. and J. Bochnicek, Geomagnetically induced pipe-to-soil voltages in the Czech oil pipelines during October-November 2003, Ann. Geophys., 23, 3089–3093, SRef-ID: 1432-0576/ag/2005-23-3089, 2005.

  9. Koen, J., Geomagnetically induced currents in the Southern African electricity transmission network, PhD thesis, University of Cape Town, 2002.

  10. Korja, T., M. Engels, A. A. Zhamaletdinov, A. A. Kovtun, N. A. Palshin, M. Yu. Smirnov, A. Tokarev, V. E. Asming, L. L. Vanyan, I. L. Vardaniants, and the BEAR Working Group, Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield, Earth Planets Space, 54, 535–558, 2002.

  11. Lehtinen, M. and R. Pirjola, Currents produced in earthed conductor networks by geomagnetically-induced electric fields, Ann. Geophys., 3(4), 479–484, 1985.

  12. McKay, A., Geoelectric Fields and Geomagnetically Induced Currents in the United Kingdom, PhD thesis, University of Edinburgh, 2003.

  13. Pal’shin, N. A., The Method of Deep Magnetotelluric Soundings Using Electric Currents Induced in Operating Power Lines: the Case Study of the Loviisa-Nurmijärvi Power Line, Izvestiya, Physics of the Solid Earth, 34, No. 1, Scientific Communications, 72–75, Translated from Fizika Zemli, No. 1, 1998, pp. 80–83, 1998.

  14. Pirjola, R., Geomagnetic effects on Ground-Based Technological Systems, Review of Radio Science, URSI, 473, 2002.

  15. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in FORTRAN: the art of scientific computing, 2nd ed., Cambridge University Press, Cambridge, 1992.

  16. Pulkkinen, A., R. Pirjola, D. Boteler, A. Viljanen, and I. Yegorov, Modelling of space weather effects on pipelines, J. Appl. Geophys., 48, 233–256, 2001a.

  17. Pulkkinen, A., A. Viljanen, K. Pajunpää, and R. Pirjola, Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network, J. Appl. Geophys., 48, 219–231, 2001b.

  18. Pulkkinen, A. and M. Engels, The role of 3D geomagnetic induction in the determination of the ionospheric currents from the ground geomagnetic data, Ann. Geophys., 23, 909–917, 2005.

  19. Pulkkinen, A., A. Klimas, D. Vassiliadis, V. Uritsky, and E. Tanskanen, Spatiotemporal scaling properties of the ground geomagnetic field variations, J. Geophys. Res., 111, A03305, doi:10.1029/2005JA011294, 2006a.

  20. Pulkkinen, A., A. Viljanen, and R. Pirjola, Estimation of geomagnetically induced current levels from different input data, Space Weather, 4, S08005, doi:10.1029/2006SW000229, 2006b.

  21. Simpson, F. and K. Bahr, Practical Magnetotellurics, Cambridge University Press, 2005.

  22. Tikhonov, A. N., On determining electrical characteristics of the deep layers of the Earth’s crust, Dokl. Akad. Nauk. SSSR, 73, 295–297, 1950.

  23. Utada, H., T. Koyama, H. Shimizu, and A. D. Chave, A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region, Geophys. Res. Lett., 30(4), 1194, doi:10.1029/2002GL016092, 2003.

  24. Viljanen, A., R. Pirjola, and O. Amm, Magnetotelluric source effect due to 3D ionospheric current systems using the complex image method for 1D conductivity structures, Earth Planets Space, 51, 933–945, 1999.

  25. Viljanen, A., A. Pulkkinen, O. Amm, R. Pirjola, T. Korja, and Bear Working Group, Fast computation of the geoelectric field using the method of elementary current systems, Ann. Geophys., 22, 101–113, 2004.

  26. Viljanen, A., A. Pulkkinen, R. Pirjola, K. Pajunpaa, P. Posio, and A. Koistinen, Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system, Space Weather, 4, S10004, doi:10.1029/2006SW000234, 2006.

  27. Weidelt, P., The Inverse Problem of Geomagnetic Induction, Z. Geophys., 38, 257–289, 1972.

Download references

Author information

Correspondence to Antti Pulkkinen.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Geomagnetic induction
  • geomagnetically induced currents
  • GIC
  • modeling
  • inversion
  • space weather