Skip to main content

A numerical simulation of ionospheric and atmospheric variations associated with the Sumatra earthquake on December 26, 2004

Abstract

In the Sumatra earthquake that occurred on December 26, 2004, significant ionospheric variations were detected immediately after the earthquake in both the TEC (total electron content) data of GPS (Global Positioning System) and the ionosonde data. A magnetic pulsation with a period of about 4 min was also observed in Phimai, Thailand. Recent studies have suggested that these events are associated with acoustic waves excited by a sudden large-scale displacement of the sea surface around the epicenter. In order to study these phenomena quantitatively, a time-dependent two-dimensional nonhydrostatic compressible atmosphere-ionosphere model has been used and compared with relevant data. By modeling in sea surface perturbation, we were able to reproduce an atmospheric oscillation with a period of about 4 min in the upper atmosphere above the epicenter. The electron density variations observed by GPS/TEC and by ionosondes were also reproduced fairly well. We found that the observed TIDs (traveling ionospheric disturbances) with long periods are caused by the ducted thermospheric gravity waves produced in the thermosphere through acoustic pulse from the epicenter. The good overall agreement between the simulation results and observations indicates that numerical simulation with the nonhydrostatic compressible atmosphere-ionosphere model could be a useful tool to investigate the relationship between variations in the upper atmosphere and various sources of disturbances in the lower atmosphere.

References

  • Banks, P. M. and G. Kockarts, Aeronomy, Academic Press, New York, 1973.

    Google Scholar 

  • Bilham, R., A flying start, then a slow slip, Science, 308, 1126-1127, 2005. Blanc, E., Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: A summary, Ann. Geophys., 19, 395–409, 1985.

    Google Scholar 

  • DasGupta, A., A. Das, D. Hui, K. K. Bandyopadhyay, and M. R. Sivaraman, Ionospheric perturbations observed by the GPS following the December 26th, 2004 Sumatra-Andaman earthquake, Earth Planets Space, 58, 167–172, 2006.

    Article  Google Scholar 

  • Davies, K. and D. M. Baker, Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964, J. Geophys. Res., 70, 2251–2253, 1965.

    Article  Google Scholar 

  • Davies, J. B. and C. B. Archambeau, Modeling of atmospheric and ionospheric disturbances from shallow seismic sources, Phys. Earth Planet. Int., 105, 183–199, 1998.

    Article  Google Scholar 

  • Francis, S. H., Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere, J. Geophys. Res., 78, 2278–2301, 1973.

    Article  Google Scholar 

  • Francis, S. H., Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 37, 1011–1054, 1975.

    Article  Google Scholar 

  • Fukao, Y., K. Nishida, N. Suda, K. Nawa, and N. Kobayashi, A theory of the Earth’s background free oscillation, J. Geophys. Res., 107, B9, 2206, doi:10.1029/2001JB000153, 2002.

    Google Scholar 

  • Georges, T. M., Infrasound from convective storms: Examining the evidence, Rev. Geophys. Space Phys., 11, 571–594, 1973.

    Article  Google Scholar 

  • Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.

    Article  Google Scholar 

  • Heki, K. and J. Ping, Directivity and apparent velocity of the coseismic traveling ionospheric disturbances observed with a dense GPS array, Earth Planet. Sci. Lett., 236, 845–855, 2005.

    Article  Google Scholar 

  • Heki, K., Y. Otsuka, N. Choosakul, N. Hemmakorn, T. Komolmis, and T. Maruyama, Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances, J. Geophys. Res., 111, B09313, doi:10.1029/2005JB004202, 2006.

    Google Scholar 

  • Hickey, M. P., G. Schubert, and R. L. Walterscheid, Acoustic wave heating of the thermosphere, J. Geophys. Res., 106, 1–6, 2001.

    Article  Google Scholar 

  • Hines, C. O., Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441–1481, 1960.

    Article  Google Scholar 

  • Hirata, K., K. Satake, Y. Tanioka, T. Kuragano, Y. Hasegawa, Y. Hayashi, and N. Hamada, The 2004 Indian Ocean tsunami: Tsunami source model from satellite altimetry, Earth Planets Space, 58, 195–201, 2006.

    Article  Google Scholar 

  • Igarashi, K., S. Kainuma, I. Nishimura, S. Okamoto, H. Kuroiwa, T. Tanaka, and T. Ogawa, Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991, J. Atmos. Terr. Phys., 56, 1227–1234, 1994.

    Article  Google Scholar 

  • Iyemori, T., M. Nose, D. Han, Y. Gao, M. Hashizume, N. Choosakul, H. Shinagawa, Y. Tanaka, M. Utsugi, A. Saito, H. McCreadie, Y. Odagi, and F. Yang, Geomagnetic pulsations caused by the Sumatra earthquake on December 26, 2004, Geophys. Res. Lett., 32, L20807, doi:10.1029/2005GL024083, 2005.

    Article  Google Scholar 

  • Kanamori, H. and J. Mori, Harmonic excitation of mantle Rayleigh waves by the 1991 eruption of Mount Pinatubo, Philippines, Geophys. Res. Lett., 19, 721–724, 1992.

    Article  Google Scholar 

  • Kanamori, H., J. Mori, and D. G. Harkrider, Excitation of atmospheric oscillations by volcanic eruptions, J. Geophys. Res., 99, 21,947–21,961, 1994.

    Article  Google Scholar 

  • Kelley, M. C., R. Livingston, and M. McCready, Large amplitude thermospheric oscillations induced by an earthquake, Geophys. Res. Lett., 12, 577–580, 1985.

    Article  Google Scholar 

  • Leonard, R. S. and R. A. Barnes, Jr., Observation of ionospheric disturbances following the Alaska earthquake, J. Geophys. Res., 70, 1250–1253, 1965.

    Article  Google Scholar 

  • Li, Y. Q., A. R. Jacobson, R. C. Carlos, R. S. Massey, Y. N. Taranenko, and G. Wu, The blast wave of the Shuttle plume at ionospheric heights, Geophys. Res. Lett., 21, 2737–2740, 1994.

    Article  Google Scholar 

  • Liu, C. H. and K. C. Yeh, Excitation of acoustic-gravity waves in an isothermal atmosphere, Tellus, 23, 150–163, 1971.

    Article  Google Scholar 

  • Liu, C. H., J. Klostermeyer, K. C. Yeh, T. B. Jones, T. Robinson, O. Holt, R. Leitinger, T. Ogawa, K. Sinno, S. Kato, T. Ogawa, A. J. Bedard, and L. Kersley, Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980, J. Geophys. Res., 87, 6281–6290, 1982.

    Article  Google Scholar 

  • Lognonné, P., E. Clévédé, and H. Kanamori, Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere, Geophys. J. Int., 135, 388–406, 1998.

    Article  Google Scholar 

  • Nishida, K., N. Kobayashi, and Y. Fukao, Resonant oscillations between the solid Earth and the atmosphere, Science, 287, 2244–2246, 2000.

    Article  Google Scholar 

  • Ogawa, T., H. Kumagai, and K. Sinno, Ionospheric disturbances over Japan due to the 18 May 1980 eruption of Mount St. Helens, J. Atmos. Terr. Phys., 44, 863–868, 1982.

    Article  Google Scholar 

  • Otsuka, Y., N. Kotake, T. Tsugawa, K. Shiokawa, T. Ogawa, Effendy, S. Saito, M. Kawamura, T. Maruyama, N. Hemmakorn, and T. Komolmis, GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake, Earth Planets Space, 58, 159–165, 2006.

    Article  Google Scholar 

  • Pokhotelov, O. A., M. Parrot, E. N. Fedorov, V. A. Plipenko, V. V. Surkov, and V. A. Gladychev, Response of the ionosphere to natural and manmade acoustic sources, Ann. Geophys., 13, 1197–1210, 1995.

    Article  Google Scholar 

  • Roberts, D. H., J. A. Klobuchar, P. F. Fougere, and D. H. Hendrickson, A large-amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens, J. Geophys. Res., 87, 6291–6301, 1982.

    Article  Google Scholar 

  • Row, R. V., Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake, J. Geophys. Res., 72, 1599–1610, 1967.

    Article  Google Scholar 

  • Schunk, R. W. and A. F. Nagy, Ionosphere of the terrestrial planets, Rev. Geophys. Space Phys., 18, 813–852, 1980.

    Article  Google Scholar 

  • Shinagawa, H. and S. Oyama, A two-dimensional simulation of thermospheric vertical winds in the vicinity of an auroral arc, Earth Planets Space, 58, 1173–1181, 2006.

    Article  Google Scholar 

  • Tanaka, T., T. Ichinose, T. Okuzawa, T. Shibata, Y. Sato, C. Nagasawa, and T. Ogawa, HF-Doppler observations of acoustic waves excited by the Urakawa-oki earthquake on 21 March 1982, J. Atmos. Terr. Phys., 46, 233–245, 1984.

    Article  Google Scholar 

  • Tanioka, Y., Yudhicara, T. Kususose, S. Kathiroli, Y. Nishimura, S. Iwasaki, and K. Satake, Rupture process of the 2004 great Sumatra- Andaman earthquake estimated from tsunami waveforms, Earth Planets Space, 58, 203–209, 2006.

    Article  Google Scholar 

  • Walterscheid, R. L., G. Schubert, and D. G. Brinkman, Acoustic waves in the upper mesosphere and lower thermosphere generated by deep tropical convection, J. Geophys. Res., 108, A11, 1392, doi: 10.1029/2003JA010065, 2003.

    Article  Google Scholar 

  • Whipple, F. J. W., The great Siberian meteor and the waves, seismic and aerial, which it produced, Quart. J. R. Meteor. Soc., 16, 287–304, 1930.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shinagawa.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Shinagawa, H., Iyemori, T., Saito, S. et al. A numerical simulation of ionospheric and atmospheric variations associated with the Sumatra earthquake on December 26, 2004. Earth Planet Sp 59, 1015–1026 (2007). https://doi.org/10.1186/BF03352042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352042

Key words