Skip to main content

Studies on the lithosphere and the water transport by using the Japan Sea submarine cable (JASC): 1. Theoretical considerations


The Japan Sea Cable (JASC) was retired from telecommunications services and its ownership transferred to the scientific community in February, 1996. For the first stage of its scientific reuse program, a Japan-Russia joint project has been initiated to monitor electrical potential differences across the Japan Sea to study the electrical conductivity distribution in the Earth and the water transport across the cable.

This paper describes preliminary investigations by forward modelling study to explore possible results from the voltage observation, before analyzing real data. On the resistivity structure, modelling has suggested that voltage data is most sensitive to the conductance of resistive lithosphere, especially at longer periods. Water transport modelling has shown that the heterogeneity of sub-bottom resistivity does not greatly influence the cable voltage, and that water transport of 5–6 Sv in the Japan Sea can generate voltage differences of 70–80 mV across the JASC. A preliminary observation was found to be roughly consistent with this estimation.


  • Chave, A. D. and D. S. Luther, Low-frequency, motionally induced electro-magnetic fields in the ocean, 1. Theory, J. Geophys. Res., 95, 7185–7200, 1990.

    Article  Google Scholar 

  • Chave, A. D., D. S. Luther, and J. H. Filloux, Observation of the boundary current system and heat transport at 26.5 N in the Subtropical North Atlantic Ocean, J. Phys. Ocean., 27, 1827–1848, 1997.

    Article  Google Scholar 

  • Cox, C. S., Electromagnetic induction in the oceans and inferences on the constitution of the Earth, Geophys. Surv., 4, 137–156, 1980.

    Article  Google Scholar 

  • Flosadottir, A. H., J. C. Larsen, and J. T. Smith, Motional induction in North Atlantic circulation models, J. Geophys. Res., 102, 10353–10372, 1997.

    Article  Google Scholar 

  • Fujii, I., L. J. Lanzerotti, H. Utada, H. Kinoshita, J. Kasahara, L. V. Medford, and C. G. Maclennan, Geoelectric power spectra over oceanic distances, Geophys. Res. Lett., 22, 421–424, 1995.

    Article  Google Scholar 

  • Kasahara, J., H. Utada, and H. Kinoshita, GeO-TOC project-Reuse of submarine cables for seismic and geoelectrical measurements, J. Phys. Earth, 43, 619–628, 1995.

    Article  Google Scholar 

  • Lanzerotti, L. J., A. D. Chave, C. H. Sayres, L. V. Medford, and C. G. Maclennan, Large scale electric field measurements on the Earth’s sur-face: A review, J. Geophys. Res., 98, 23525–23534, 1993.

    Article  Google Scholar 

  • Larsen, J. C., Transport and heat flux of the Florida Current at 27 N derived from cross-stream voltages and profiling data: Theory and observations, Phil. Trans. R. Soc. Lond., A 338, 169–236, 1992.

    Article  Google Scholar 

  • Levitus, S., Climatological atlas of the World ocean, NOAA Profess. Pap., 13, 1–173, 1982.

    Google Scholar 

  • Lizarralde, D., A. D. Chave, G. Hirth, and A. Schultz, Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data, J. Geophys. Res., 100, 17837–17854, 1995.

    Article  Google Scholar 

  • Palshin, N. A., Sea-floor deep magnetotelluric soundings in the northeastern Pacific, Tikhookeanskaya Geologiya, 6, 95–99, 1988 (in Russian).

    Google Scholar 

  • Palshin, N. A., Oceanic electromagnetic studies. A review, Surv. Geophys., 17, 465–491, 1996.

    Article  Google Scholar 

  • Palshin, N. A., L. L. Vanyan, and P. Kaikkonen, On-shore amplification of the electric field induced by a coastal sea current, Phys. Earth Planet. Int., 94, 269–273, 1996.

    Article  Google Scholar 

  • Sanford, T. B., Motionally-induced electric and magnetic fields in the sea, J. Geophys. Res., 76, 3476–3492, 1971.

    Article  Google Scholar 

  • Sarkisyan, A. S., The diagnostic calculations of large scale oceanic circulation, The Sea, 6, 363–458, 1977.

    Google Scholar 

  • Semenov, V. Yu. and M. Rodkin, Conductivity structure of the upper mantle in an active subduction zone, J. Geodynamics, 21, 395–364, 1996.

    Article  Google Scholar 

  • Utada, H., Y. Hamano, and J. Segawa, Conductivity anomaly around the Japanese Islands, in Geology and Geophysics of the Japan Sea, pp. 103–149, Terra Sci. Publ., 1996.

  • Vanyan, L. L. and I. V. Yegorov, Numerical modelling of the magnetotelluric field in the three-layered inhomogeneous media, Fizika Zemli, No. 7, 121–125, 1992 (in Russian).

    Google Scholar 

  • Vanyan, L. L., T. A. Demidova, I. V. Yegorov, and R. P. Bulatov, Charac-teristics of electric field induced by Gulf Stream (Numerical simulation), Phys. Solid Earth, 28, 339–342, 1992.

    Google Scholar 

  • Vanyan, L. L., N. A. Palshin, and I. A. Repin, Deep magnetotelluric sounding using submarine cable Australia — New-Zealand. 2. Interpretation, Fizika Zemli, No. 5, 53–57, 1995.

    Google Scholar 

  • Vasseur, G. and P. Weidelt, Bimodal electromagnetic induction in non-uniform thin sheets with application to the Northern Pyrenean Anomaly, Geophys. J. R. Astr. Soc., 51, 669–690, 1977.

    Article  Google Scholar 

  • Yegorov, I. V. and N. A. Palshin, Numerical modelling of the magnetotelluric fields in the inhomogeneous layered media, Fizika Zemli, No. 6, 68–72, 1994 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. L. Vanyan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanyan, L.L., Utada, H., Shimizu, H. et al. Studies on the lithosphere and the water transport by using the Japan Sea submarine cable (JASC): 1. Theoretical considerations. Earth Planet Sp 50, 35–42 (1998).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Lithosphere
  • Water Transport
  • Apparent Resistivity
  • Asthenosphere
  • Submarine Cable