Skip to main content

Numerically modelling the ratio of cross-strait voltage to water transport for the Bering Strait

Abstract

We find out if the ratio of cross-strait voltage to water transport for the Bering Strait (BS) is constant. For this purpose, we have developed a technique to construct BS water velocity maps. We have built up a three-dimensional conductivity model for the BS region. Using this model, we have simulated coast-to-coast voltage for the various velocity maps constructed. We have found that the voltage/transport ratio remains constant for electromagnetic field periods exceeding 2 days. We have estimated the ratio as 239 ± 11 mV/(km2 · m/s) assuming bottom sediment conductance to be 600 S. We conclude that measuring cross-strait voltage allows the monitoring of BS water transport.

References

  1. Avdeev, D. B., Y. Ogawa, A. V. Kuvshinov, and O. V. Pankratov, An interpretation of magnetovariational data in the Northern Tohoku District, Japan, using multi sheet modelling, J. Geomag. Geoelectr., 47, 405–410, 1995.

    Article  Google Scholar 

  2. Avdeev, D. B., A. V. Kuvshinov, O. V. Pankratov, and G. A. Newman, High-performance three-dimensional electromagnetic modelling using modified Neumann series. Wide-band numerical solution and examples, J. Geomag. Geoelectr., 49, 1519–1539, 1997.

    Article  Google Scholar 

  3. Baines, G. L. and R. C. Bell, The relationship between ocean current transports and electrical potential differences across the Tasman Sea, measured using an ocean cable, Deep-Sea Res., 34, 531–546, 1987.

    Article  Google Scholar 

  4. Bloom, G. L., Water transport and temperature measurements in the eastern Bering strait, J. Geophys. Res., 69, 3335–3354, 1964.

    Article  Google Scholar 

  5. Fainberg, E. B., O. V. Pankratov, and B. Sh. Singer, Thin sheet modelling of subsurface and deep inhomogeneities, Geophys. J. Int., 113, 144–154, 1993.

    Article  Google Scholar 

  6. Korotaev, S. M., I. L. Trofimov, and V. S. Shneyer, Integral conductivity determination of sea sediments in some World Ocean areas by sea currents electric field, Ann. Geophys., 37, 321–325, 1981.

    Google Scholar 

  7. Langel, R. A., International Geomagnetic Reference Field: the sixth generation, J. Geomag. Geoelectr., 44, 679–707, 1992.

    Article  Google Scholar 

  8. Larsen, J. C., Transport and heat flux of the Florida Current at 27°N derived from cross-stream voltages and profiling data: theory and observations, Philos. Trans. R. Soc. London. A, 338, 169–236, 1992.

    Article  Google Scholar 

  9. Larsen, J. C. and T. B. Sanford, Florida Current volume transport from voltage measurements, Science, 227, 302–304, 1985.

    Article  Google Scholar 

  10. Moroz, Yu. F., Deep geoelectric cross-section of Kamchatka region, Izv. AN SSSR, ser. Fizika Zemli, 4, 59–69, 1991 (in Russian).

    Google Scholar 

  11. Navy Oceanographic Survey of the USSR, Map of the Bathymetry of the Chukotka Sea and Bering Strait, Moscow, 1972 (in Russian).

  12. Navy Oceanographic Survey of the USSR, Atlas of the Oceans. North Ocean, Moscow, 1980 (in Russian).

  13. Pankratov, O. V., Electromagnetic field modelling in presence of subsurface and deep inhomogeneities, Doctoral Thesis, Institute of the Physics of the Earth, Moscow, 1991 (in Russian).

    Google Scholar 

  14. Pankratov, O. V., D. B. Avdeev, and A. V. Kuvshinov, Electromagnetic field scattering in a heterogeneous earth: A solution to the forward problem, Phys. Solid Earth, 31, 201–209, 1995 (English edition).

    Google Scholar 

  15. Roach, I. S., K. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, Direct measurements of transport and water properties through the Bering Strait, J. Geophys. Res., 100, 18443–18457, 1995.

    Article  Google Scholar 

  16. Robinson, I. S., A theoretical analysis of the use of submarine cable as electromagnetic oceanographic flowmeters, Philos. Trans. R. Soc. London. A, 280, 355–396, 1976.

    Article  Google Scholar 

  17. Sanford, T. B. and R. E. Flick, On the relationship between transport and motional electric potentials in broad, shallow currents, J. Mar. Res., 33, 123–139, 1975.

    Google Scholar 

  18. Shneyer, V. S., I. L. Trofimov, and S. M. Korotaev, The geoelectromagnetic monitoring of the water transport in Bering Strait (estimation of the feasibilities), Fizika Zemli, 6, 110–112, 1994 (in Russian).

    Google Scholar 

  19. Singer, B. Sh., Method for solution of Maxwell’s equations in non-uniform media, Geophys. J. Int., 120, 590–598, 1995.

    Article  Google Scholar 

  20. Singer, B. Sh. and E. B. Fainberg, Electromagnetic induction in non-uniform thin layers, 234 pp., IZMIRAN, Moscow, 1985 (in Russian).

    Google Scholar 

  21. Tyler, R. H., L. A. Mysak, and J. M. Oberhuber, Electromagnetic fields generated by a three-dimensional global ocean circulation, J. Geophys. Res., 102, 5531–5551, 1997.

    Article  Google Scholar 

  22. Zinger, B. Sh., A. V. Kuvshinov, L. P. Mishina, and E. B. Fainberg, Global geomagnetic sounding: new methodology and results, Phys. Solid Earth, 29, 35–43, 1993 (English edition).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Pankratov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pankratov, O.V., Avdeev, D.B., Kuvshinov, A.V. et al. Numerically modelling the ratio of cross-strait voltage to water transport for the Bering Strait. Earth Planet Sp 50, 165–169 (1998). https://doi.org/10.1186/BF03352097

Download citation

Keywords

  • Water Transport
  • Neumann Series
  • Stream Direction
  • Florida Current
  • Background Picture