Skip to main content

Advertisement

Numerically modelling the ratio of cross-strait voltage to water transport for the Bering Strait

Article metrics

  • 229 Accesses

  • 1 Citations

Abstract

We find out if the ratio of cross-strait voltage to water transport for the Bering Strait (BS) is constant. For this purpose, we have developed a technique to construct BS water velocity maps. We have built up a three-dimensional conductivity model for the BS region. Using this model, we have simulated coast-to-coast voltage for the various velocity maps constructed. We have found that the voltage/transport ratio remains constant for electromagnetic field periods exceeding 2 days. We have estimated the ratio as 239 ± 11 mV/(km2 · m/s) assuming bottom sediment conductance to be 600 S. We conclude that measuring cross-strait voltage allows the monitoring of BS water transport.

References

  1. Avdeev, D. B., Y. Ogawa, A. V. Kuvshinov, and O. V. Pankratov, An interpretation of magnetovariational data in the Northern Tohoku District, Japan, using multi sheet modelling, J. Geomag. Geoelectr., 47, 405–410, 1995.

  2. Avdeev, D. B., A. V. Kuvshinov, O. V. Pankratov, and G. A. Newman, High-performance three-dimensional electromagnetic modelling using modified Neumann series. Wide-band numerical solution and examples, J. Geomag. Geoelectr., 49, 1519–1539, 1997.

  3. Baines, G. L. and R. C. Bell, The relationship between ocean current transports and electrical potential differences across the Tasman Sea, measured using an ocean cable, Deep-Sea Res., 34, 531–546, 1987.

  4. Bloom, G. L., Water transport and temperature measurements in the eastern Bering strait, J. Geophys. Res., 69, 3335–3354, 1964.

  5. Fainberg, E. B., O. V. Pankratov, and B. Sh. Singer, Thin sheet modelling of subsurface and deep inhomogeneities, Geophys. J. Int., 113, 144–154, 1993.

  6. Korotaev, S. M., I. L. Trofimov, and V. S. Shneyer, Integral conductivity determination of sea sediments in some World Ocean areas by sea currents electric field, Ann. Geophys., 37, 321–325, 1981.

  7. Langel, R. A., International Geomagnetic Reference Field: the sixth generation, J. Geomag. Geoelectr., 44, 679–707, 1992.

  8. Larsen, J. C., Transport and heat flux of the Florida Current at 27°N derived from cross-stream voltages and profiling data: theory and observations, Philos. Trans. R. Soc. London. A, 338, 169–236, 1992.

  9. Larsen, J. C. and T. B. Sanford, Florida Current volume transport from voltage measurements, Science, 227, 302–304, 1985.

  10. Moroz, Yu. F., Deep geoelectric cross-section of Kamchatka region, Izv. AN SSSR, ser. Fizika Zemli, 4, 59–69, 1991 (in Russian).

  11. Navy Oceanographic Survey of the USSR, Map of the Bathymetry of the Chukotka Sea and Bering Strait, Moscow, 1972 (in Russian).

  12. Navy Oceanographic Survey of the USSR, Atlas of the Oceans. North Ocean, Moscow, 1980 (in Russian).

  13. Pankratov, O. V., Electromagnetic field modelling in presence of subsurface and deep inhomogeneities, Doctoral Thesis, Institute of the Physics of the Earth, Moscow, 1991 (in Russian).

  14. Pankratov, O. V., D. B. Avdeev, and A. V. Kuvshinov, Electromagnetic field scattering in a heterogeneous earth: A solution to the forward problem, Phys. Solid Earth, 31, 201–209, 1995 (English edition).

  15. Roach, I. S., K. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, Direct measurements of transport and water properties through the Bering Strait, J. Geophys. Res., 100, 18443–18457, 1995.

  16. Robinson, I. S., A theoretical analysis of the use of submarine cable as electromagnetic oceanographic flowmeters, Philos. Trans. R. Soc. London. A, 280, 355–396, 1976.

  17. Sanford, T. B. and R. E. Flick, On the relationship between transport and motional electric potentials in broad, shallow currents, J. Mar. Res., 33, 123–139, 1975.

  18. Shneyer, V. S., I. L. Trofimov, and S. M. Korotaev, The geoelectromagnetic monitoring of the water transport in Bering Strait (estimation of the feasibilities), Fizika Zemli, 6, 110–112, 1994 (in Russian).

  19. Singer, B. Sh., Method for solution of Maxwell’s equations in non-uniform media, Geophys. J. Int., 120, 590–598, 1995.

  20. Singer, B. Sh. and E. B. Fainberg, Electromagnetic induction in non-uniform thin layers, 234 pp., IZMIRAN, Moscow, 1985 (in Russian).

  21. Tyler, R. H., L. A. Mysak, and J. M. Oberhuber, Electromagnetic fields generated by a three-dimensional global ocean circulation, J. Geophys. Res., 102, 5531–5551, 1997.

  22. Zinger, B. Sh., A. V. Kuvshinov, L. P. Mishina, and E. B. Fainberg, Global geomagnetic sounding: new methodology and results, Phys. Solid Earth, 29, 35–43, 1993 (English edition).

Download references

Author information

Correspondence to Oleg V. Pankratov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pankratov, O.V., Avdeev, D.B., Kuvshinov, A.V. et al. Numerically modelling the ratio of cross-strait voltage to water transport for the Bering Strait. Earth Planet Sp 50, 165–169 (1998) doi:10.1186/BF03352097

Download citation

Keywords

  • Water Transport
  • Neumann Series
  • Stream Direction
  • Florida Current
  • Background Picture