Skip to main content

Advertisement

The Ion Mass Imager on the Planet-B spacecraft

Article metrics

  • 214 Accesses

  • 8 Citations

Abstract

The Ion Mass Imager (IMI) is a light-weight ion mass composition instrument for the Japanese Planet-B mission to be launched to Mars in 1998. The objective of the Planet-B mission is to study the Martian environment with emphasis on the upper atmosphere interaction with the solar wind. IMI measures positive ions with energies between 10 eV/q and 35 keV/q and with a mass resolution high enough to resolve the most important ion species (H+, He++, He+, O++, O+, O2+). The instrument has a 360° field-of-view aperture and uses the spacecraft spin to cover almost the full unit sphere to obtain three-dimensional distribution functions every 4 s (half a spacecraft spin period). Particles are energy-filtered by a spherical electrostatic analyzer, and then mass-analysed by the magnetic separation method. The ions hit a microchannel plate assembly with a position sensitive anode divided into 32 mass channels. Together with 16 angular sectors, this system “images” the direction of motion and mass of ions. A pre-acceleration voltage of 0–4000 V is used to select the mass range, e.g., modes optimized for light ions (up to O+) and heavy ions (O+ to charged dust grains). A loss-less data compression algorithm is used in the in-flight processing software to optimize the amount of data that can be returned from Mars.

References

  1. Barabash, S. and R. Lundin, On a possible dust-plasma interaction at Mars, ISEE Transactions on Plasma Science, 22, 2, 173–178, 1994.

  2. Barabash, S., E. Dubinin, N. Pissarenko, R. Lundin, and C. T. Russell, Picked-up protons near Mars: Phobos observations, Geophys. Res. Lett., 18, 1805–1808, 1991.

  3. Barabash, S., R. Lundin, and O. Norberg, Upstream regions at Mars, in Plasma Environments of Non-Magnetized Planets, edited by T. I. Gombosi, pp. 285–290, Pergamon Press, Oxford, 1993.

  4. Barabash, S., E. Kallio, R. Lundin, and H. Koskinen, Measurements of nonthermal helium escape from Mars, J. Geophys. Res., 100, 21,307–21,316, 1995.

  5. CCSDS, Source Coding for Data Compression, Consultative Committee for Space Data Systems, CCSDS 111.0-W-2, Washington, D.C., March 1994.

  6. Dolginov, Sh. Sh., Ye. G. Yeroshenko, and L. N. Zhuzgov, The magnetic field of Mars according to data from the Mars 3 and Mars 5, J. Geophys. Res., 81, 3353–3362, 1976.

  7. Dubinin, E., R. Lundin, N. Pissarenko, S. Barabash, A. Zakharov, H. Koskinen, K. Schwingenschuh, and Y. Yeroshenko, Indirect evidences for a gas/dust torus along the Phobos orbit, Geophys. Res. Lett., 17, 861–864, 1990.

  8. Dubinin, E., R. Lundin, H. Koskinen, and N. Pissarenko, Ion acceleration in the Martian tail: PHOBOS observations, J. Geophys. Res., 98, 3991–3997, 1993.

  9. Dubinin, E. M., K. Sauer, R. Lundin, O. Norberg, K. Schwingenshuh, M. Delva, and W. Riedler, Plasma characteristics of the boundary layer of the Martian magnetosphere, J. Geophys. Res., 101, 27061–27075, 1996.

  10. Eliasson, L., O. Norberg, R. Lundin, K. Lundin, S. Olsen, H. Borg, M. André, H. Koskinen, P. Riihelä, M. Boehm, and B. Whalen, The Freja hot plasma experiment—Instrument and first results, Space Sci. Rev., 70, 563–576, 1994.

  11. Gringauz, K. I., V. V. Bezrukikh, M. I. Vergin, and A. P. Rezimnov, On the electron and ion components of plasma in the antisolar part of near-Martian space, J. Geophys. Res., 81, 3349–3352, 1976.

  12. Intriligator, D. S. and E. J. Smith, Mars in the solar wind, J. Geophys. Res., 84, 8427–8435, 1979.

  13. Ip, W.-H., On the oxygen corona of Mars, Icarus, 76, 135–145, 1988.

  14. Ip, W.-H., T. K. Breus, and T. Zarnowiecki, Termination of the solar wind proton flow due to charge exchange effect near Mars, in Plasma Environments of Non-Magnetized Planets, edited by T. I. Gombosi, pp. 291–294, Pergamon Press, Oxford, 1993.

  15. Lundin, R. and E. M. Dubinin, Phobos-2 results on the ionospheric plasma escape from Mars, Adv. Space. Res., 12, 9, 255–263, 1992.

  16. Lundin, R., A. Zakharov, R. Pellinen, B. Hultqvist, H. Borg, E. M. Dubinin, S. Barabasj, N. Pissarenko, H. Koskinen, and I. Liede, First results of the ionospheric plasma escape from Mars, Nature, 341, 609–612, 1989a.

  17. Lundin, R., B. Hultqvist, S. Olsen, R. Pellinen, I. Liede, A. Zakharov, E. Dubinin, and N. Pissarenko, The ASPERA experiment of the Soviet phobos spacecraft, in Solar System Physics, edited by J. H. Waite, Jr., J. Burch, and T. E. More, pp. 417–424, AGU, Washington, D.C., 1989b.

  18. Lundin, R., A. Zakharov, R. Pellinen, B. Hultqvist, H. Borg, E. M. Dubinin, S. Barabasj, N. Pissarenko, H. Koskinen, and I. Liede, Plasma composition measurements of the Martian magnetosphere morphology, Geophys. Res. Lett., 17, 877–880, 1990.

  19. Lundin, R., E. Dubinin, S. Barabash, and O. Norberg, ASPERA observations of Martian magnetospheric boundaries, in Plasma Environments of Non-Magnetized Planets, edited by T. I. Gombosi, pp. 311–320, Pergamon Press, Oxford, 1993.

  20. Riedler, W., et al., Magnetic fields near Mars: First results, Nature, 341, 604–607, 1989.

  21. Vaisberg, O. L., Mars—Plasma environment, in Physics of Solar Planetary Environment, Vol. 2, edited by D. J. Williams, pp. 854–871, AGU, Washington, D.C., 1976.

  22. Vaisberg, O. and V. Smirnov, The Martian magnetotail, Adv. Space Res., 6, 301–314, 1986.

  23. Yamauchi, M., S. Olsen, H. Borg, O. Norberg, M. Hirahara, R. Lundin, and K. Lundin, Report on the Calibration of the IMI Instrument for Planet-B, IRF Technical Report, Swedish Institute of Space Physics, Kiruna, Sweden, 1998 (in press).

  24. Yeroshenko, Ye., W. Riedler, K. Schwingenschuh, J. G. Luhmann, M. Ong, and C. T. Russell, The magnetotail of Mars: PHOBOS observations, Geophys. Res. Lett., 17, 885–888, 1990.

Download references

Author information

Correspondence to O. Norberg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norberg, O., Yamauchi, M., Lundin, R. et al. The Ion Mass Imager on the Planet-B spacecraft. Earth Planet Sp 50, 199–205 (1998) doi:10.1186/BF03352104

Download citation

Keywords

  • Solar Wind
  • Dusty Plasma
  • Spacecraft Spin
  • Target Data Rate
  • Data Compression Scheme