Skip to main content


The Mars thermosphere-ionosphere: Predictions for the arrival of Planet-B

Article metrics


The primary science objective of the Planet-B mission to Mars is to study the Martian upper atmosphere-ionosphere system and its interaction with the solar wind. An improved knowledge of the Martian magnetic field (whether it is induced or intrinsic) is needed, and will be provided by Planet-B. In addition, a proper characterization of the neutral thermosphere structure is essential to place the various plasma observations in context. The Neutral Mass Spectrometer (NMS) onboard Planet-B will provide the required neutral density information over the altitude range of 150–500 km. Much can be learned in advance of Planet-B data taking as multi-dimensional thermosphere-ionosphere and MHD models are exercised to predict the Mars near-space environment that might be expected during the solar maximum conditions of Cycle 23 (1999–2001). Global model simulations of the Mars thermosphere-ionosphere system are presented and analyzed in this paper. These Mars predictions pertain to the time of Planet-B arrival in October 1999 (F10.7200; Ls220). In particular, the National Center for Atmospheric Research (NCAR) Mars Thermosphere General Circulation Model (MTGCM) is exercised to calculate thermospheric neutral densities (CO2, CO, N2, O, Ar, O2), photochemical ions (CO+2, O+2, O+ below 200 km), neutral temperatures, and 3-components winds over 70–300 km. Cases are run with and without dust loading of the lower atmosphere in order to examine the potential impacts of dust storms on the thermosphere-ionosphere structure. Significant dust-driven impacts are predicted in the lower thermosphere (100–120 km), but are less pronounced above 150 km. The ionospheric peak height changes greatly with the passage of a Mars global dust storm event. In addition, Martian dayside exobase temperatures are generally warmer during dusty periods, in accord with Mariner 9 UVS data (Stewart et al., 1972). During the Planet-B mission, the NMS team intends to use the MTGCM as a facility tool whose simulated output can be utilized to aid various investigations.


  1. Barth, C. A., A. I. F. Stewart, S. W. Bougher, D. M. Hunten, S. A. Bauer, and A. F. Nagy, Mars, Ch. 5.7: Aeronomy of the Current Martian Atmosphere, pp. 1054–1089, Univ. of Arizona Press, 1992.

  2. Bauer, S. J. and R. E. Hartle, On the extent of the Mars ionosphere, J. Geophys. Res., 78, 3169, 1973.

  3. Bougher, S. W., Comparative thermospheres: Venus and Mars, Adv. Space Res., 15, 21–45, 1995.

  4. Bougher, S. W. and J. L. Fox, The Ancient Mars Thermosphere, Workshop on Evolution of Mars Volatiles, LPI Technical Report #96-01, Part 1, pp. 5–6, 1996.

  5. Bougher, S. W., R. E. Dickinson, R. G. Roble, and E. C. Ridley, Mars thermospheric general circulation model: Calculations for the arrival of Phobos at Mars, Geophys. Res. Lett., 15, 1511–1514, 1988.

  6. Bougher, S. W., R. G. Roble, E. C. Ridley, and R. E. Dickinson, The Mars thermosphere II. General circulation with coupled dynamics and composition, J. Geophys. Res., 95, 14811–14827, 1990.

  7. Bougher, S. W., E. C. Ridley, C. G. Fesen, and R. W. Zurek, Mars mesosphere and thermosphere coupling: Semidiurnal tides, J. Geophys. Res., 98, 3281–3295, 1993.

  8. Bougher, S. W., D. M. Hunten, and R. G. Roble, CO2 cooling in terrestrial planet thermospheres, J. Geophys. Res., 99, 14609–14622, 1994.

  9. Bougher, S. W., J. M. Murphy, and R. M. Haberle, Dust Storm Impacts on the Mars Upper Atmosphere, Adv. Space Res., 19, 1255–1260, 1997.

  10. Chen, R. H., T. E. Cravens, and A. F. Nagy, The Martian ionosphere in light of Viking observations, J. Geophys. Res., 83, 3871, 1978.

  11. Colin, L., Encounter with Venus, Science, 203, 743–745, 1979.

  12. Fox, J. L., The production and escape of nitrogen atoms on Mars, J. Geophys. Res., 98, 3297, 1993.

  13. Fox, J. L. and A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars, J. Geophys. Res., 84, 7315–7331, 1979.

  14. Fox, J. L., P. Zhou, and S. W. Bougher, The Martian Thermosphere/Ionosphere at High and Low Solar Activities, Adv. Space Res., 17, 203–218, 1995.

  15. Hanson, W. B. and G. P. Mantas, Viking electron temperature measurements: Evidence for a magnetic field in the Martian atmosphere, J. Geophys. Res., 93, 7538, 1988.

  16. Hanson, W. B., S. Sanatani, and D. R. Zucarro, The Martian ionosphere as observed by the Viking retarding potential analyzers, J. Geophys. Res., 82, 4351–4363, 1977.

  17. Joselyn, J. A., J. B. Anderson, H. Coffey, K. Harvey, D. Hathaway, G. Heckman, E. Hildner, W. Mende, K. Schatten, R. Thompson, A. W. P. Thomson, and O. R. White, Panel achieves consensus prediction of solar cycle 23, EOS Trans., American Geophysical Union, 78, 205–212, 1997.

  18. Krasnopolsky, V. A., Solar cycle variations of the hydrogen escape rate and the CO mixing ratio on Mars, Icarus, 101, 33–41, 1993.

  19. Murphy, J. R., J. B. Pollack, R. M. Haberle, C. B. Leovy, O. B. Toon, and J. Schaeffer, Three-dimensional numerical simulation of Martian global dust storms, J. Geophys. Res., 100, 26357–26376, 1995.

  20. Nier, A. O. and M. B. McElroy, Composition and structure of Mars upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 82, 4341–4349, 1977.

  21. Pollack, J. B., R. M. Haberle, J. Schaeffer, and H. Lee, Simulations of the general circulation of the Martian atmosphere: 1. Polar processes, J. Geophys. Res., 95, 1447–1473, 1990.

  22. Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson, A coupled thermosphere-ionosphere general circulation model, Geophys. Res. Lett., 15, 1325–1328, 1988.

  23. Rohrbaugh, R. P., J. S. Nisbet, E. Bleuler, and J. R. Herman, The effects of energetically produced O+2 on the ion temperature of the Martian thermosphere, J. Geophys. Res., 84, 3327, 1979.

  24. Schatten, K. H. and W. D. Pesnell, An early solar dynamo prediction: Cycle 23-Cycle 22, Geophys. Res. Lett., 20, 2275–2278, 1993.

  25. Schofield, J. T., D. Crisp, J. R. Barnes, R. Haberle, J. A. Magalhaes, J. R. Murphy, A. Seiff, C. LaBraw, and G. R. Wilson, Preliminary results from the Pathfinder Atmospheric Structure Investigation/Meteorology Experiment (ASI/MET), Science, 278, 1752–1758, 1997.

  26. Seiff, A. and D. B. Kirk, Structure of the atmosphere of Mars in summer in mid-latitudes, J. Geophys. Res., 82, 4364–4378, 1977.

  27. Shinagawa, H. and T. E. Cravens, A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars, J. Geophys. Res., 94, 6506–6516, 1989.

  28. Stewart, A. I. F., Revised time dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies, LASP-JPL Internal Rep., PO# NQ-802429, Jet Propulsion Lab., Pasadena CA., March, 1987.

  29. Stewart, A. I. and W. B. Hanson, Mars’ upper atmosphere: Mean and variations, Adv. Space Res., 2, 87–101, 1982.

  30. Stewart, A. I., C. A. Barth, C. W. Hord, and A. L. Lane, Mariner 9 ultraviolet spectrometer experiment: Structure of Mars upper atmosphere, Icarus, 17, 469–474, 1972.

  31. Stewart, A. I. F., M. J. Alexander, R. R. Meier, L. J. Paxton, S. W. Bougher, and C. G. Fesen, Atomic oxygen in the Martian thermosphere, J. Geophys. Res., 97, 91–102, 1992.

  32. Tobiska, W. K., Revised solar extreme ultraviolet flux model, J. Atmos. Terr. Phys., 53, 1005–1018, 1991.

  33. Torr, M. R. and D. G. Torr, Ionization frequencies for solar cycle 21: Revised, J. Geophys. Res., 90, 6675–6678, 1985.

  34. Torr, M. R., D. G. Torr, R. A. Ong, and H. E. Hinteregger, Ionization frequencies for major thermospheric constituents as a function of solar cycle 21, Geophys. Res. Lett., 6, 771–774, 1979.

  35. Torr, M. R., D. G. Torr, and H. E. Hinteregger, Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21, J. Geophys. Res., 85, 6063–6068, 1980.

  36. Yamamoto, T. and K. Tsuruda, The Planet-B mission, Earth Planets Space, 50, this issue, 175–181, 1998.

  37. Zhang, M. H. G. and J. G. Luhmann, Comparisons of peak ionosphere pressures at Mars and Venus with incident solar wind dynamic pressure, J. Geophys. Res., 97, 1017–1025, 1992.

  38. Zhang, M. H. G., J. G. Luhmann, A. J. Kliore, and J. Kim, A post-Pioneer Venus Reassessment of the Martian dayside ionosphere as observed by radio occultation methods, J. Geophys. Res., 95, 14829–14839, 1990.

Download references

Author information

Correspondence to S. W. Bougher.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bougher, S.W., Shinagawa, H. The Mars thermosphere-ionosphere: Predictions for the arrival of Planet-B. Earth Planet Sp 50, 247–257 (1998) doi:10.1186/BF03352111

Download citation


  • Dust Storm
  • Semidiurnal Tide
  • Martian Atmosphere
  • Dust Storm Event
  • Neutral Mass Spectrometer