Skip to main content

Effects of decreasing ionospheric pressure on the solar wind interaction with non-magnetized planets

Abstract

The large-scale solar wind interaction with the ionosphere of non-magnetized planets is numerically simulated in the framework of three-dimensional (3-D) magnetohydrodynamics (MHD) with a two-component plasma. The finite-volume total variation diminishing (TVD) scheme is used to solve this problem. Numerical results are given for two cases of different solar extreme ultraviolet (EUV) flux values. In case 1, solar EUV ionization is set so the peak ionospheric plasma pressure is below the incident solar wind dynamic pressure. In case 2, on the other hand, it is set so the peak ionospheric pressure exceeds the solar wind dynamic pressure. While the formation of the bow shock and the magnetic barrier in the upstream region is seen in both cases, a clear formation of the ionopause is seen only in case 2. In case 1, the interplanetary magnetic field (IMF) penetrates from the magnetosheath to the dayside ionosphere so as to adjust the ionospheric total pressure. Penetrating IMF affects the vertical motion of the ionospheric plasma to cause anomalous stratifications of the terminator ionosphere. However, formation process of the ionotail is little affected by the penetrating IMF. Another important process predicted from the present study is partial penetration of the IMF from the magnetic barrier to the terminator ionosphere. This nonideal MHD process characterized by the penetration of flowing magnetized plasma into non-magnetized plasma plays a principal role in the mixing interaction between the solar wind and the planetary ionosphere.

References

  1. Brace, L. H., W. T. Kasprzak, H. A. Taylor, R. F. Theis, C. T. Russell, A. Barnes, J. D. Mihalov, and D. M. Hunten, The ionotail of Venus: Its configuration and evidence for ion escape, J. Geophys. Res., 92, 15–26, 1987.

    Article  Google Scholar 

  2. Heikkila, W. K., Interpretation of recent AMPTE data at the magnetopause, J. Geophys. Res., 102, 2115–2124, 1997.

    Article  Google Scholar 

  3. Luhmann, J. G., The solar wind interaction with Venus, Space Sci. Rev., 44, 241–306, 1986.

    Article  Google Scholar 

  4. Luhmann, J. G. and L. H. Brace, Near-Mars space, Rev. Geophys., 29, 121–140, 1991.

    Article  Google Scholar 

  5. Luhmann, J. G. and T. E. Cravens, Magnetic fields in the ionosphere of Venus, Space Sci. Rev., 55, 201–274, 1991.

    Article  Google Scholar 

  6. Luhmann, J. G., C. T. Russell, F. L. Scarf, L. H. Brace, and W. C. Knudsen, Characteristics of the Marslike limit of the Venus-solar wind interaction, J. Geophys. Res., 92, 8545–8557, 1987.

    Article  Google Scholar 

  7. Phillips, J. L. and D. J. McComas, The magnetosheath and magnetotail of Venus, Space Sci. Rev., 55, 1–80, 1991.

    Article  Google Scholar 

  8. Phillips, J. L., J. G. Luhmann, and C. T. Russell, Magnetic configuration of the Venus magnetosheath, J. Geophys. Res., 91, 7931–7938, 1986.

    Article  Google Scholar 

  9. Russell, C. T., J. G. Luhmann, and R. C. Elphic, The properties of the low altitude magnetic belt in the Venus ionosphere, Adv. Space Res., 2(10), 13–16, 1983.

    Google Scholar 

  10. Shinagawa, H., A two-dimensional model of the Venus ionosphere 1. Unmagnetized ionosphere, J. Geophys. Res., 101, 26,911–26,919, 1996a.

    Article  Google Scholar 

  11. Shinagawa, H., A two-dimensional model of the Venus ionosphere 2. Magnetized ionosphere, J. Geophys. Res., 101, 26,921–26,930, 1996b.

    Article  Google Scholar 

  12. Slavin, J. A., K. Schwingenschuh, W. Riedler, and Y. Yeroshenko, The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape, J. Geophys. Res., 96, 11,235–11,241, 1991.

    Article  Google Scholar 

  13. Tanaka, T., Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: calculation by a new MHD simulation scheme, J. Geophys. Res., 98, 17,251–17,262, 1993.

    Article  Google Scholar 

  14. Tanaka, T., Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields, J. Comput. Phys., 111, 381–389, 1994.

    Article  Google Scholar 

  15. Tanaka, T. and K. Murawski, Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation, J. Geophys. Res., 102, 19,805–19,821, 1997.

    Article  Google Scholar 

  16. Zhang, T. L., J. G. Luhmann, and C. T. Russell, The solar cycle dependence of the location and shape of the Venus bow shock, J. Geophys. Res., 95, 14,961–14,967, 1990.

    Article  Google Scholar 

  17. Zhang, T. L., J. G. Luhmann, and C. T. Russell, The magnetic barrier at Venus, J. Geophys. Res., 96, 11,145–11,153, 1991.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Tanaka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T. Effects of decreasing ionospheric pressure on the solar wind interaction with non-magnetized planets. Earth Planet Sp 50, 259–268 (1998). https://doi.org/10.1186/BF03352112

Download citation

Keywords

  • Solar Wind
  • Interplanetary Magnetic Field
  • Solar Zenith Angle
  • Total Variation Diminish
  • Solar Wind Dynamic Pressure