Skip to main content

Advertisement

Effects of decreasing ionospheric pressure on the solar wind interaction with non-magnetized planets

Article metrics

  • 314 Accesses

  • 27 Citations

Abstract

The large-scale solar wind interaction with the ionosphere of non-magnetized planets is numerically simulated in the framework of three-dimensional (3-D) magnetohydrodynamics (MHD) with a two-component plasma. The finite-volume total variation diminishing (TVD) scheme is used to solve this problem. Numerical results are given for two cases of different solar extreme ultraviolet (EUV) flux values. In case 1, solar EUV ionization is set so the peak ionospheric plasma pressure is below the incident solar wind dynamic pressure. In case 2, on the other hand, it is set so the peak ionospheric pressure exceeds the solar wind dynamic pressure. While the formation of the bow shock and the magnetic barrier in the upstream region is seen in both cases, a clear formation of the ionopause is seen only in case 2. In case 1, the interplanetary magnetic field (IMF) penetrates from the magnetosheath to the dayside ionosphere so as to adjust the ionospheric total pressure. Penetrating IMF affects the vertical motion of the ionospheric plasma to cause anomalous stratifications of the terminator ionosphere. However, formation process of the ionotail is little affected by the penetrating IMF. Another important process predicted from the present study is partial penetration of the IMF from the magnetic barrier to the terminator ionosphere. This nonideal MHD process characterized by the penetration of flowing magnetized plasma into non-magnetized plasma plays a principal role in the mixing interaction between the solar wind and the planetary ionosphere.

References

  1. Brace, L. H., W. T. Kasprzak, H. A. Taylor, R. F. Theis, C. T. Russell, A. Barnes, J. D. Mihalov, and D. M. Hunten, The ionotail of Venus: Its configuration and evidence for ion escape, J. Geophys. Res., 92, 15–26, 1987.

  2. Heikkila, W. K., Interpretation of recent AMPTE data at the magnetopause, J. Geophys. Res., 102, 2115–2124, 1997.

  3. Luhmann, J. G., The solar wind interaction with Venus, Space Sci. Rev., 44, 241–306, 1986.

  4. Luhmann, J. G. and L. H. Brace, Near-Mars space, Rev. Geophys., 29, 121–140, 1991.

  5. Luhmann, J. G. and T. E. Cravens, Magnetic fields in the ionosphere of Venus, Space Sci. Rev., 55, 201–274, 1991.

  6. Luhmann, J. G., C. T. Russell, F. L. Scarf, L. H. Brace, and W. C. Knudsen, Characteristics of the Marslike limit of the Venus-solar wind interaction, J. Geophys. Res., 92, 8545–8557, 1987.

  7. Phillips, J. L. and D. J. McComas, The magnetosheath and magnetotail of Venus, Space Sci. Rev., 55, 1–80, 1991.

  8. Phillips, J. L., J. G. Luhmann, and C. T. Russell, Magnetic configuration of the Venus magnetosheath, J. Geophys. Res., 91, 7931–7938, 1986.

  9. Russell, C. T., J. G. Luhmann, and R. C. Elphic, The properties of the low altitude magnetic belt in the Venus ionosphere, Adv. Space Res., 2(10), 13–16, 1983.

  10. Shinagawa, H., A two-dimensional model of the Venus ionosphere 1. Unmagnetized ionosphere, J. Geophys. Res., 101, 26,911–26,919, 1996a.

  11. Shinagawa, H., A two-dimensional model of the Venus ionosphere 2. Magnetized ionosphere, J. Geophys. Res., 101, 26,921–26,930, 1996b.

  12. Slavin, J. A., K. Schwingenschuh, W. Riedler, and Y. Yeroshenko, The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape, J. Geophys. Res., 96, 11,235–11,241, 1991.

  13. Tanaka, T., Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: calculation by a new MHD simulation scheme, J. Geophys. Res., 98, 17,251–17,262, 1993.

  14. Tanaka, T., Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields, J. Comput. Phys., 111, 381–389, 1994.

  15. Tanaka, T. and K. Murawski, Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation, J. Geophys. Res., 102, 19,805–19,821, 1997.

  16. Zhang, T. L., J. G. Luhmann, and C. T. Russell, The solar cycle dependence of the location and shape of the Venus bow shock, J. Geophys. Res., 95, 14,961–14,967, 1990.

  17. Zhang, T. L., J. G. Luhmann, and C. T. Russell, The magnetic barrier at Venus, J. Geophys. Res., 96, 11,145–11,153, 1991.

Download references

Author information

Correspondence to T. Tanaka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T. Effects of decreasing ionospheric pressure on the solar wind interaction with non-magnetized planets. Earth Planet Sp 50, 259–268 (1998) doi:10.1186/BF03352112

Download citation

Keywords

  • Solar Wind
  • Interplanetary Magnetic Field
  • Solar Zenith Angle
  • Total Variation Diminish
  • Solar Wind Dynamic Pressure