Skip to main content

Advertisement

Low-frequency electromagnetic waves and instabilities within the Martian bi-ion plasma

Article metrics

  • 700 Accesses

  • 30 Citations

Abstract

The Martian environment is characterized by the presence of heavy (oxygen) ions of planetary origin which strongly influence the solar wind dynamics, including the bow shock structure and position and may cause additional plasma boundaries in the magnetosheath. In this paper the dispersion characteristics of low-frequency electromagnetic waves (LFEW) in the proton gyrofrequency range are studied. The excitation of these waves results from the relative motion between the solar wind protons and planetary heavy ions, which are considered as unmagnetized and, therefore, may act like a beam in the solar wind. The model takes into account the small extension of the Martian magnetosphere compared with the pickup gyroradius of an exospheric ion. From the dispersion analysis it was found that the most unstable waves with relatively high growth rates propagate oblique to the ambient magnetic field. For small propagation angle to the magnetic field these are right-hand polarized whistler waves in the solar wind frame, and due to Doppler shift they appear near to the proton cyclotron frequency as left-hand polarized waves in the beam (spacecraft) frame. We suggest that the sporadic LFEW emission as seen in the upstream region of Mars by Phobos-2 may indicate the existence of localized “heavy ion bunches” whose origin is relatively unclear, but a possible relation to the Martian moons cannot be excluded. Especially, the so-called Phobos events marked by spectral peaks around the proton cyclotron frequency may be interpreted as signatures of the solar wind interaction with a tenuous gas torus. A comparable situation is known from the AMPTE Ba and Li releases where during the late stages of the experiments an enhanced proton cyclotron emission was observed as well. Another important aspect of LFEW excitation is its role in proton deceleration and heating upstream the bow shock where turbulent processes may provide a strong momentum coupling between the solar wind and the newly generated ions of planetary origin.

References

  1. Baumgärtel, K., K. Sauer, A. Bogdanov, E. Dubinin, and M. Dougherty, “Phobos events”: signatures of solar wind dust interaction, Planet. Space Sci., 44, 589–601, 1996.

  2. Baumgärtel, K., K. Sauer, E. Dubinin, V. Tarasov, and M. Dougherty, “Phobos events” —signatures of solar wind interaction with a gas torus?, Earth Planets Space, 1998 (in press).

  3. Brecht, S., Solar wind proton deposition into the Martian magnetosphere, J. Geophys. Res., 102, 11,287–11,294, 1997.

  4. Brinca, A. L., Cometary linear instabilities: From profusion to perspective, in Cometary Plasma Processes, pp. 211–221, Geophys. Monograph 61, 1991.

  5. Brinca, A. L. and B. T. Tsurutani, Unusual characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies, Astron. Astrophys., 187, 311, 1987.

  6. Dubinin, E., The Phobos and Deimos effects, Adv. Space Res., 13, 271, 1993.

  7. Dubinin, E., R. Lundin, N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, H. Koskinen, K. Schwingenschuh, and Y. Yeroshenko, Indirect evidence for a gas/dust torus along the Phobos orbit, Geophys. Res. Lett., 17, 861, 1990.

  8. Dubinin, E., D. Obod, A. Pedersen, and R. Grard, Mass-loading asymmetry in upstream region near Mars, Geophys. Res. Lett., 21, 2769–2772, 1994.

  9. Dubinin, E., K. Sauer, R. Lundin, K. Baumgärtel, and A. Bogdanov, Structuring of the transition region (plasma mantle) of the Martian magnetosphere, Geophys. Res. Lett., 23, 785–788, 1996.

  10. Gary, S. P. and M. M. Mellot, Whistler damping at oblique propagation: laminar shock precursors, J. Geophys. Res., 90, 99–104, 1985.

  11. Gomberoff, L., G. Gnavi, and F. T. Gratton, Minor heavy ion electromagnetic beam-plasma interactions in the solar wind, J. Geophys. Res., 101, 13,517–13,522, 1996.

  12. Gurnett, D. A., R. R. Anderson, T. Z. Ma, G. Haerendel, G. Paschmann, O. Bauer, R. Treumann, H. Koons, and H. Lühr, Waves and electric fields associated with the first AMPTE artificial comet, J. Geophys. Res., 91, 10013–10028, 1986a.

  13. Gurnett, D. A., T. Z. Ma, R. R. Anderson, O. Bauer, G. Haerendel, B. Häusler, G. Paschmann, R. Treumann, H. C. Koons, R. H. Holzworth, and H. Lühr, Analysis and interpretation of shocklike electrostatic noise observed during the AMPTE solar wind lithium releases, J. Geophys. Res., 91, 1301–1310, 1986b.

  14. Huddleston, D. E., R. J. Strangeway, J. Warnecke, C. T. Russel, and M. G. Kivelson, Ion cyclotron waves in the Io torus during the Galileo encounter: Warm plasma dispersion analysis, Geophys. Res. Lett., 24, 2143–2146, 1997.

  15. Ip, W.-H., On a hot oxygen corona of Mars, Icarus, 76, 135–145, 1988.

  16. Lühr, H., D. J. Southwood, N. Klöcker, M. Acuna, B. Häusler, M. W. Dunlop, W. A. Mier-Jedrzejowics, R. P. Rijnbeek, and M. Six, In situ magnetic field measurements during the AMPTE solar wind Li+ releases, J. Geophys. Res., 91, 1261–1270, 1986.

  17. Motschmann, U., H. Kafemann, and M. Scholer, Nongyrotropy in magnetoplasmas: simulation of wave excitation and phase-space diffusion, Ann. Geophys., 15, 603–613, 1997.

  18. Omidi, N. and D. Winske, A kinetic study of solar wind mass loading and coemtary bow shocks, J. Geophys. Res., 92, 13,409–13,426, 1987.

  19. Papadopoulos, K., J. D. Huba, and A. T. Y. Lui, Collisionless coupling in the AMPTE artificial comet, J. Geophys. Res., 92, 47–54, 1987.

  20. Riedler et al., Magnetic fields near Mars: First results of the Phobos mission, Nature, 341, 604–607, 1989.

  21. Russel, C. T., J. G. Luhmann, K. Schwingenschuh, W. Riedler, and Y. Yeroshenko, Upstream waves at Mars: Phobos observations, Geophys. Res. Lett., 17, 897–900, 1990.

  22. Sauer, K., T. Roatsch, U. Motschmann, K. Schwingenschuh, R. Lundin, H. Rosenbauer, and S. Livi, Observations of the plasma boundaries and phenomena around Mars with Phobos 2, J. Geophys. Res., 97, 6227–6233, 1992.

  23. Sauer, K., K. Baumgärtel, and U. Motschmann, Phobos events as precursors of solar wind-dust interaction, Geophys. Res. Lett., 20, 165–168, 1993.

  24. Sauer, K., A. Bogdanov, and K. Baumgärtel, Evidence of an ion composition boundary (protonopause) in bi-ion fluid simulations of solar wind mass-loading, Geophys. Res. Lett., 21, 2255–2258, 1994.

  25. Sauer, K., E. Dubinin, K. Baumgärtel, and A. Bogdanov, Deimos—an obstacle to the solar wind, Science, 269, 1075–1078, 1995.

  26. Sauer, K., A. Bogdanov, K. Baumgärtel, and E. Dubinin, Plasma environment of comet Wirtanen during its low-activity stage, Planet. Space Sci., 44, 715–729, 1996.

  27. Sauer, K., E. Dubinin, and K. Baumgärtel, Bi-ion structuring in the magnetosheath of Mars: Theoretical modelling, Adv. Space Res., 20, 137–142, 1997a.

  28. Sauer, K., A. Lipatov, K. Baumgärtel, and E. Dubinin, Solar wind—Pluto interaction revised, Adv. Space Res., 20, 295–299, 1997b.

  29. Sauer, K., E. Dubinin, M. Dunlop, and V. Tarasov, Low-frequency electromagnetic waves near the proton cyclotron frequency at the AMPTE Ba release: Relevance to weak comets and Mars, Geophys. Res. Lett., 1998 (submitted).

  30. Smith, R. L. and N. Brice, Propagation in multi-component plasmas, J. Geophys. Res., 69, 5029, 1964.

  31. Stix, T. H., Waves in Plasmas, p. 7, American Institute of Physics, New York, 1992.

  32. Tarasov, V., E. Dubinin, S. Perraut, K. Sauer, and A. Skalsky, Wavelet application to the magnetic field turbulence in the upstream of the Martian bow shock, Earth Planets Space, 1998 (submitted).

  33. Tokar, R. L. and P. S. Gary, The whistler mode in a Vlasov plasma, Phys. Fluids, 28, 1063–1069, 1984.

  34. Tsurutani, B. T., Comets: a laboratory for plasma waves and instabilities, in Cometary Plasma Processes, pp. 189–209, Geophysical Monograph 61, AGU, 1991.

  35. Tsurutani, B. T. and E. J. Smith, Hydromagnetic waves and instabilities associated with cometray-ion pickup: ICE observations, Geophys. Res. Lett., 13, 263–266, 1986.

  36. Verigin, M. I., K. I. Gringauz, G. A. Kotova, N. M. Shutte, H. Rosenbauer, S. Livi, A. K. Richter, W. Riedler, K. Schwingenschuh, and K. Szegö, On the problem of the Martian atmosphere dissipation: Phobos-2 TAUS spectrometer results, J. Geophys. Res., 96, 19,315–19,320, 1991.

  37. Warnecke, J., M. G. Kivelson, K. K. Khurana, D. E. Huddleston, and C. T. Russel, Ion cyclotron waves observed at Galileo’s Io encounter: Implications for neutral cloud distribution and plasma composition, Geophys. Res. Lett., 24, 2139–2142, 1997.

  38. Young, D. T., S. Perrault, A. Roux, C. de Villedary, R. Gendrin, A. Korth, K. Kremser, and D. Jones, Wave-particle interactions near Ω He+ observed on GEOS1 and 2, J. Geophys. Res., 86, 6755, 1981.

Download references

Author information

Correspondence to K. Sauer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sauer, K., Dubinin, E., Baumgärtel, K. et al. Low-frequency electromagnetic waves and instabilities within the Martian bi-ion plasma. Earth Planet Sp 50, 269–278 (1998) doi:10.1186/BF03352113

Download citation

Keywords

  • Solar Wind
  • Unstable Wave
  • Solar Wind Proton
  • Solar Wind Interaction
  • Beam Frame