Skip to main content

Low-frequency electromagnetic waves and instabilities within the Martian bi-ion plasma

Abstract

The Martian environment is characterized by the presence of heavy (oxygen) ions of planetary origin which strongly influence the solar wind dynamics, including the bow shock structure and position and may cause additional plasma boundaries in the magnetosheath. In this paper the dispersion characteristics of low-frequency electromagnetic waves (LFEW) in the proton gyrofrequency range are studied. The excitation of these waves results from the relative motion between the solar wind protons and planetary heavy ions, which are considered as unmagnetized and, therefore, may act like a beam in the solar wind. The model takes into account the small extension of the Martian magnetosphere compared with the pickup gyroradius of an exospheric ion. From the dispersion analysis it was found that the most unstable waves with relatively high growth rates propagate oblique to the ambient magnetic field. For small propagation angle to the magnetic field these are right-hand polarized whistler waves in the solar wind frame, and due to Doppler shift they appear near to the proton cyclotron frequency as left-hand polarized waves in the beam (spacecraft) frame. We suggest that the sporadic LFEW emission as seen in the upstream region of Mars by Phobos-2 may indicate the existence of localized “heavy ion bunches” whose origin is relatively unclear, but a possible relation to the Martian moons cannot be excluded. Especially, the so-called Phobos events marked by spectral peaks around the proton cyclotron frequency may be interpreted as signatures of the solar wind interaction with a tenuous gas torus. A comparable situation is known from the AMPTE Ba and Li releases where during the late stages of the experiments an enhanced proton cyclotron emission was observed as well. Another important aspect of LFEW excitation is its role in proton deceleration and heating upstream the bow shock where turbulent processes may provide a strong momentum coupling between the solar wind and the newly generated ions of planetary origin.

References

  1. Baumgärtel, K., K. Sauer, A. Bogdanov, E. Dubinin, and M. Dougherty, “Phobos events”: signatures of solar wind dust interaction, Planet. Space Sci., 44, 589–601, 1996.

    Article  Google Scholar 

  2. Baumgärtel, K., K. Sauer, E. Dubinin, V. Tarasov, and M. Dougherty, “Phobos events” —signatures of solar wind interaction with a gas torus?, Earth Planets Space, 1998 (in press).

  3. Brecht, S., Solar wind proton deposition into the Martian magnetosphere, J. Geophys. Res., 102, 11,287–11,294, 1997.

    Article  Google Scholar 

  4. Brinca, A. L., Cometary linear instabilities: From profusion to perspective, in Cometary Plasma Processes, pp. 211–221, Geophys. Monograph 61, 1991.

  5. Brinca, A. L. and B. T. Tsurutani, Unusual characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies, Astron. Astrophys., 187, 311, 1987.

    Google Scholar 

  6. Dubinin, E., The Phobos and Deimos effects, Adv. Space Res., 13, 271, 1993.

    Article  Google Scholar 

  7. Dubinin, E., R. Lundin, N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, H. Koskinen, K. Schwingenschuh, and Y. Yeroshenko, Indirect evidence for a gas/dust torus along the Phobos orbit, Geophys. Res. Lett., 17, 861, 1990.

    Article  Google Scholar 

  8. Dubinin, E., D. Obod, A. Pedersen, and R. Grard, Mass-loading asymmetry in upstream region near Mars, Geophys. Res. Lett., 21, 2769–2772, 1994.

    Article  Google Scholar 

  9. Dubinin, E., K. Sauer, R. Lundin, K. Baumgärtel, and A. Bogdanov, Structuring of the transition region (plasma mantle) of the Martian magnetosphere, Geophys. Res. Lett., 23, 785–788, 1996.

    Article  Google Scholar 

  10. Gary, S. P. and M. M. Mellot, Whistler damping at oblique propagation: laminar shock precursors, J. Geophys. Res., 90, 99–104, 1985.

    Article  Google Scholar 

  11. Gomberoff, L., G. Gnavi, and F. T. Gratton, Minor heavy ion electromagnetic beam-plasma interactions in the solar wind, J. Geophys. Res., 101, 13,517–13,522, 1996.

    Article  Google Scholar 

  12. Gurnett, D. A., R. R. Anderson, T. Z. Ma, G. Haerendel, G. Paschmann, O. Bauer, R. Treumann, H. Koons, and H. Lühr, Waves and electric fields associated with the first AMPTE artificial comet, J. Geophys. Res., 91, 10013–10028, 1986a.

    Article  Google Scholar 

  13. Gurnett, D. A., T. Z. Ma, R. R. Anderson, O. Bauer, G. Haerendel, B. Häusler, G. Paschmann, R. Treumann, H. C. Koons, R. H. Holzworth, and H. Lühr, Analysis and interpretation of shocklike electrostatic noise observed during the AMPTE solar wind lithium releases, J. Geophys. Res., 91, 1301–1310, 1986b.

    Article  Google Scholar 

  14. Huddleston, D. E., R. J. Strangeway, J. Warnecke, C. T. Russel, and M. G. Kivelson, Ion cyclotron waves in the Io torus during the Galileo encounter: Warm plasma dispersion analysis, Geophys. Res. Lett., 24, 2143–2146, 1997.

    Article  Google Scholar 

  15. Ip, W.-H., On a hot oxygen corona of Mars, Icarus, 76, 135–145, 1988.

    Article  Google Scholar 

  16. Lühr, H., D. J. Southwood, N. Klöcker, M. Acuna, B. Häusler, M. W. Dunlop, W. A. Mier-Jedrzejowics, R. P. Rijnbeek, and M. Six, In situ magnetic field measurements during the AMPTE solar wind Li+ releases, J. Geophys. Res., 91, 1261–1270, 1986.

    Article  Google Scholar 

  17. Motschmann, U., H. Kafemann, and M. Scholer, Nongyrotropy in magnetoplasmas: simulation of wave excitation and phase-space diffusion, Ann. Geophys., 15, 603–613, 1997.

    Article  Google Scholar 

  18. Omidi, N. and D. Winske, A kinetic study of solar wind mass loading and coemtary bow shocks, J. Geophys. Res., 92, 13,409–13,426, 1987.

    Article  Google Scholar 

  19. Papadopoulos, K., J. D. Huba, and A. T. Y. Lui, Collisionless coupling in the AMPTE artificial comet, J. Geophys. Res., 92, 47–54, 1987.

    Article  Google Scholar 

  20. Riedler et al., Magnetic fields near Mars: First results of the Phobos mission, Nature, 341, 604–607, 1989.

    Article  Google Scholar 

  21. Russel, C. T., J. G. Luhmann, K. Schwingenschuh, W. Riedler, and Y. Yeroshenko, Upstream waves at Mars: Phobos observations, Geophys. Res. Lett., 17, 897–900, 1990.

    Article  Google Scholar 

  22. Sauer, K., T. Roatsch, U. Motschmann, K. Schwingenschuh, R. Lundin, H. Rosenbauer, and S. Livi, Observations of the plasma boundaries and phenomena around Mars with Phobos 2, J. Geophys. Res., 97, 6227–6233, 1992.

    Article  Google Scholar 

  23. Sauer, K., K. Baumgärtel, and U. Motschmann, Phobos events as precursors of solar wind-dust interaction, Geophys. Res. Lett., 20, 165–168, 1993.

    Article  Google Scholar 

  24. Sauer, K., A. Bogdanov, and K. Baumgärtel, Evidence of an ion composition boundary (protonopause) in bi-ion fluid simulations of solar wind mass-loading, Geophys. Res. Lett., 21, 2255–2258, 1994.

    Article  Google Scholar 

  25. Sauer, K., E. Dubinin, K. Baumgärtel, and A. Bogdanov, Deimos—an obstacle to the solar wind, Science, 269, 1075–1078, 1995.

    Article  Google Scholar 

  26. Sauer, K., A. Bogdanov, K. Baumgärtel, and E. Dubinin, Plasma environment of comet Wirtanen during its low-activity stage, Planet. Space Sci., 44, 715–729, 1996.

    Article  Google Scholar 

  27. Sauer, K., E. Dubinin, and K. Baumgärtel, Bi-ion structuring in the magnetosheath of Mars: Theoretical modelling, Adv. Space Res., 20, 137–142, 1997a.

    Article  Google Scholar 

  28. Sauer, K., A. Lipatov, K. Baumgärtel, and E. Dubinin, Solar wind—Pluto interaction revised, Adv. Space Res., 20, 295–299, 1997b.

    Article  Google Scholar 

  29. Sauer, K., E. Dubinin, M. Dunlop, and V. Tarasov, Low-frequency electromagnetic waves near the proton cyclotron frequency at the AMPTE Ba release: Relevance to weak comets and Mars, Geophys. Res. Lett., 1998 (submitted).

    Google Scholar 

  30. Smith, R. L. and N. Brice, Propagation in multi-component plasmas, J. Geophys. Res., 69, 5029, 1964.

    Article  Google Scholar 

  31. Stix, T. H., Waves in Plasmas, p. 7, American Institute of Physics, New York, 1992.

    Google Scholar 

  32. Tarasov, V., E. Dubinin, S. Perraut, K. Sauer, and A. Skalsky, Wavelet application to the magnetic field turbulence in the upstream of the Martian bow shock, Earth Planets Space, 1998 (submitted).

    Google Scholar 

  33. Tokar, R. L. and P. S. Gary, The whistler mode in a Vlasov plasma, Phys. Fluids, 28, 1063–1069, 1984.

    Article  Google Scholar 

  34. Tsurutani, B. T., Comets: a laboratory for plasma waves and instabilities, in Cometary Plasma Processes, pp. 189–209, Geophysical Monograph 61, AGU, 1991.

  35. Tsurutani, B. T. and E. J. Smith, Hydromagnetic waves and instabilities associated with cometray-ion pickup: ICE observations, Geophys. Res. Lett., 13, 263–266, 1986.

    Article  Google Scholar 

  36. Verigin, M. I., K. I. Gringauz, G. A. Kotova, N. M. Shutte, H. Rosenbauer, S. Livi, A. K. Richter, W. Riedler, K. Schwingenschuh, and K. Szegö, On the problem of the Martian atmosphere dissipation: Phobos-2 TAUS spectrometer results, J. Geophys. Res., 96, 19,315–19,320, 1991.

    Article  Google Scholar 

  37. Warnecke, J., M. G. Kivelson, K. K. Khurana, D. E. Huddleston, and C. T. Russel, Ion cyclotron waves observed at Galileo’s Io encounter: Implications for neutral cloud distribution and plasma composition, Geophys. Res. Lett., 24, 2139–2142, 1997.

    Article  Google Scholar 

  38. Young, D. T., S. Perrault, A. Roux, C. de Villedary, R. Gendrin, A. Korth, K. Kremser, and D. Jones, Wave-particle interactions near Ω He+ observed on GEOS1 and 2, J. Geophys. Res., 86, 6755, 1981.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Sauer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sauer, K., Dubinin, E., Baumgärtel, K. et al. Low-frequency electromagnetic waves and instabilities within the Martian bi-ion plasma. Earth Planet Sp 50, 269–278 (1998). https://doi.org/10.1186/BF03352113

Download citation

Keywords

  • Solar Wind
  • Unstable Wave
  • Solar Wind Proton
  • Solar Wind Interaction
  • Beam Frame