Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Ion and electron heating at the Martian bow shock. Common for bow shocks or not?


Two typical bow shock crossings recorded by the Phobos-2 spacecraft in 1989 are considered in the present paper in order to demonstrate that the Martian bow shock is the shock of “common sense” in spite of peculiarities due to the pick-up ions of the Martian origin and their Larmour radius comparable to the scale size of the interaction region between the planet and solar wind. The incident plasma flow is decelerated and plasma species are heated within the relatively thin layer upstream the planet. The observed changes of plasma density, velocity and temperature are comparable with values expected for the MHD shock waves. Moreover, the dynamics of ion and electron energy distributions observed in the shock transition region indicates that mechanisms responsible for the energy dissipation seems to be similar to those operating at the Earth’s bow shock.


  1. Barabash, S. and R. Lundin, Reflected ions near Mars, Phobos-2 observations, Geophys. Res. Lett., 20, 787–790, 1993.

  2. Barabash, S., E. Dubinin, N. Pissarenko, and C. T. Russell, Picked-up protons near Mars: Phobos-observations, Geophys. Res. Lett., 18, 1805–1808, 1991.

  3. Brecht, S. H., Hybrid simulations of the magnetic topology of Mars, J. Geophys. Res., 102, 4743–4750, 1997.

  4. Brecht, S. H. and J. R. Ferrante, Global hybrid simulation of unmagnetized planets: comparison of Venus and Mars, J. Geophys. Res., 96, 11209–11220, 1991.

  5. Delva, M. and E. Dubinin, Upstream ULF fluctuations near Mars, J. Geophys. Res., 103, 317–326, 1998.

  6. Dubinin, E., R. Lundin, H. Koskinen, and O. Norberg, Cold Ions at the Martian bow shock: Phobos Observations, J. Geophys. Res., 98, 5617–5623, 1993.

  7. Dubinin, E., D. Obod, A. Pedersen, and R. Grard, Mass-loading asymmetry in the upstream region near Mars, Geophys. Res. Lett., 21, 2769–2772, 1994.

  8. Dubinin, E., D. Obod, R. Lundin, K. Schwingenschuh, and R. Grard, Some features of the martian bow shock, Adv. Space Res., 15, 423–431, 1995.

  9. Feldman, W. C., J. R. Asbridge, S. J. Bame, M. D. Montgomery, and S. P. Gary, Solar wind electrons, J. Geophys. Res., 80, 4181–4196, 1975.

  10. Feldman, W. C., R. C. Anderson, S. J. Bame, S. P. Gary, J. T. Gosling, D. J. McComas, M. F. Thomsen, G. Paschmann, and M. M. Hoppe, Electron velocity destribution near the Earth’s bow shock, J. Geophys. Res., 88, 96–110, 1983.

  11. Fitzenreiter, R. J., J. D. Scudder, and A. J. Klimas, Three dimensional analytical model for the spatial variation of the foreshock distribution function: systematic and comparisons with ISEE observation, J. Geophys. Res., 95, 4155–4173, 1990.

  12. Formisano, V., G. Moreno, F. Palmiotto, and P. C. Hedgecock, Solar wind interaction with the Earth’s magnetic field, 1. Magnetosheath, J. Geophys. Res., 78, 3714–3730, 1973a.

  13. Formisano, V., P. C. Hedgecock, G. Moreno, F. Palmiotto, and J. K. Chao, Solar wind interaction with the Earth’s magnetic field, 2. Magnetohydro-dynamic Bow Shock, J. Geophys. Res., 78, 3731–3760, 1973b.

  14. Kallio, E., H. Koskinen, S. Barabash, R. Lundin, O. Norberg, and J. G. Luhmann, Proton flow in the Martian magnetosheath, J. Geophys. Res., 99, 23547–23559, 1994.

  15. Kiraly, P. et al., The HARP plasma experiment on-board the PHOBOS-2 spacecraft: preliminary results, Planet. Space Sci., 39, No.1/2, 139–145, 1991.

  16. Lundin, R., A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E. Dubinin, S. Barabash, I. Liede, and H. Koskinen, First measurements of the ionospheric plasma escape from Mars, Nature, 341, 609–612, 1989.

  17. Montgomery, M. D., J. R. Asbridge, and S. J. Bame, Vela 4 plasma obser-vations near the Earth’s bow shock, J. Geophys. Res., 75, 1217–1235, 1970.

  18. Moses, S. L., F. V. Coronoti, and F. L. Scarf, Expectations for the mi-crophysics of the Mars-solar wind interaction, Geophys. Res. Lett., 15, 429–432, 1989.

  19. Riedler, W., et al., Magnetic fields near Mars: first results, Nature, 341, 604–607, 1989.

  20. Rosenbauer, H., H. Miggenrieder, M. Montgomery, and R. Schwenn, Pre-liminary results of the Helios plasma measurements, in Physics of Solar Planetary Environments, vol. 1, edited by D. J. Williams, p. 319, AGU, 1976.

  21. Russell, C. T., J. G. Luhmann, K. Scwingenschuh, W. Riedler, and Ye. Yeroshenko, Upstream waves at Mars: Phobos observations, Geophys. Res. Lett., 17, 897–900, 1990.

  22. Schwartz, S. J., M. F. Thomsen, S. J. Bame, and J. Stansberry, Electron heating and the potential jump across fast mode shock, J. Geophys. Res., 93, 12923–12931, 1988.

  23. Schwingenschuh, K., W. Riedler, Ye. Yeroshenko, K. Sauer, J. G. Luhmann, M. Ong, and C. T. Russell, Martian bow shock: Phobos observations, Geophys. Res. Lett., 17, 889–892, 1990.

  24. Sckopke, N., G. Paschman, A. L. Brinca, C. W. Carlson, and H. Luhr, Ion thermalization in quasiperpendicular shocks involving reflected ions, J. Geophys. Res., 95, 6337–6352, 1990.

  25. Scudder, J. D., D. L. Lind, and K. W. Ogilvie, Electron observations in the solar wind and magnetosheath, J. Geophys. Res., 78, 6535–6548, 1973.

  26. Shutte, N. M., et al., Energy distribution of electrons with E 800 eV in the areomagnetosphere, Planet. Space Sci., 39, No. 1/2, 147–151, 1991.

  27. Skalsky, A., R. Grard, C. Nairn, S. Klimov, J.-G. Trotignon, and K. Schwin-genschuh, The Martian bow shock: wave observations in the upstream region, J. Geophys. Res., 76, 2927–2933, 1992.

  28. Skalsky, A., R. Grard, P. Kiraly, S. Klimov, V. Kopanyi, K. Scwingenschuh, and J. G. Trotignon, Simultaneous plasma waves and electron flux ob-servations upstream of the Martian bow shock., Planet. Space Sci., 41, 183–188, 1993.

  29. Tatrallyay, M., G. Gevai, I. Apathy, K. Schwingenschuh, T-L. Zhang, G. Kotova, M. Verigin, S. Livi, and H. Rosenbauer, Magnetic field over-shoots in the Martian bow shock, J. Geophys. Res., 102, 2157–2163, 1997.

  30. Thomsen, M. F., J. T. Gosling, and S. J. Bame, Ion and electron heating at collisionless shocks near the critical Mach number, J. Geophys. Res., 90, 137–148, 1985.

  31. Thomsen, M. F., M. M. Mellott, J. A. Stansberry, S. J. Bame, J. T. Gosling, and C. T. Russell, Strong electron heating at the Earth’s bow shock, J. Geophys. Res., 92, 10119–10124, 1987.

  32. Trotignon, J. G., M. Hamelin, R. Grard, A. Pedersen, S. Klimov, S. Savin, A. Skalsky, and C. Kennel, A comparison between the Earth’s and Mars’ bow shocks detected by the PHOBOS plasma wave system, Planet. Space Sci., 39, 99–112, 1991.

  33. Vaisberg, O. L., J. G. Luhmann, and C. T. Russell, Plasma observations of the solar wind interaction with Mars, J. Geophys. Res., 95, 14841–14852, 1990.

Download references

Author information



Corresponding author

Correspondence to A. Skalsky.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skalsky, A., Dubinin, E.M., Petrukovich, A. et al. Ion and electron heating at the Martian bow shock. Common for bow shocks or not?. Earth Planet Sp 50, 289–294 (1998).

Download citation


  • Solar Wind
  • Shock Front
  • Electron Heating
  • Solar Wind Condition
  • Solar Wind Proton