Skip to main content

Advertisement

Deformation of the 1995 North Sakhalin earthquake detected by JERS-1/SAR interferometry

Article metrics

  • 330 Accesses

  • 25 Citations

Abstract

We present a map of the coseismic displacement field resulting from the North Sakhalin, Russia, May 28, 1995, earthquake. Raw radar signal data from the JERS-1 synthetic aperture radar instrument acquired in 28 April, 11 June, 25 July, and 7 September 1995 are used to generate a high-resolution, wide area map of the displacements by the two-pass differential interferometry method. The interferogram shows that an area of 60 km (EW) by 80 km (NS) experienced crustal deformations. The slip mechanism with fine structure is inverted using the displacement field of the SAR interferogram. This inversion of the SAR interferogram shows, 1) the rupture area extends to the south of the southernmost rupture trace on the surface, 2) slip varies from one to seven meters from the south to the northern part on the fault plane. A theoretical fringe pattern from the model of the earthquake motion matches the observations closely. We generate a full scene digital elevation model (DEM) by JERS-1 SAR interferometry and synthesize a four-pass interferogram. Comparison of the differential interferometry between the four-pass and two-pass interferograms shows that they are very similar and the both methods are reliable to show surface displacements using JERS-1 SAR. Correlation study of the Sakhalin interferograms indicates that low surface temperatures, below the freezing point, reduced the correlation probably because a freeze would alter the dielectric constant of the surface. In these Sakhalin interferograms, we find few spurious fringes due to the usual heterogeneous distribution of weather-related atmospheric and surface conditions, probably because of the low temperatures. We also present a map of the postseismic displacement field with the SAR interferometry.

References

  1. Fujiwara, S., P. A. Rosen, M. Tobita, and Mas. Murakami, Crustal deformation measurements using repeat-pass JERS 1 SAR interferometry near the Izu peninsula, Japan, J. Geophys. Res., 103, 2411–2426, 1998.

  2. Goldstein, R. M., H. Engelhardt, B. Kamb, and R. M. Frolich, Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream, Science, 262, 1525–1530, 1993.

  3. Hiramatsu, A., The shortest discharge tree problem for 2D-image, Memo of Hiramatsu on January 10, 1992, not in print.

  4. Kasahara, M., Summary of study on the 1995 North Sakhalin earthquake and its disaster, Research Report on the 1995 North Sakhalin Earthquake and its Disaster, 1-8, 1996 (in Japanese).

  5. Kikuchi, M., Mechanism analysis by teleseismic body wave inversion, Research Report on the 1995 North Sakhalin Earthquake and its Disaster, 37-43, 1996 (in Japanese).

  6. Massonnet, D. and K. L. Feigl, Discrimination of geophysical phenomena in satellite radar interferograms, Geophys. Res. Lett., 22, 1537–1540, 1995.

  7. Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Fiegl, and T. Rabaue, The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 264, 138–142, 1993.

  8. Massonnet, D., P. Briole, and A. Arnaud, Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature, 375, 567–570, 1995.

  9. Mikhail, E. M., Observations and Least Squares, 497 pp., Harper & Row, New York, 1976.

  10. Murakami, Mak., M. Tobita, S. Fujiwara, T. Saito, and H. Masaharu, Coseismic crustal deformations of 1994 Northridge, California, earthquake detected by interferometry, J. Geophys. Res., 101, 8605–8614, 1996.

  11. Okada, Y., Surface deformation due to shear and tensile faults in a half space, Bull. Seism. Soc. Am., 75, 1135–1154, 1985.

  12. Ozawa, S., Mak. Murakami, S. Fujiwara, and M. Tobita, Synthetic aperture radar interferogram of the 1995 Kobe earthquake and its geodetic inversion, Geophys. Res. Lett., 24, 2327–2330, 1997.

  13. Rosen, P. A., S. Hensley, H. A. Zebker, F. H. Webb, and E. J. Fielding, Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry, J. Geophys. Res., 101, 23109–23125, 1996.

  14. Shimamoto, T., M. Watanabe, and Y. Suzuki, Surface faults associated with the 1995 Neftegorsk earthquake, Research Report on the 1995 North Sakhalin Earthquake and its Disaster, 203-221, 1996.

  15. Takahashi, M., M. Kasahara, N. Vasilenko, C. U. Kim, A. Ivashenko, F. Kimata, and T. Seno, Coseismic deformation around the northern part of epicentral area of the 1995 North Sakhalin earthquake deduced from geodetic observations, Report on North Sakhalin Earthquake and its Disaster, 27-36 (in Japanese), 191-202 (in English), 1996.

  16. Tobita, M., Mak. Murakami, S. Fujiwara, P. Rosen, S. Hensley, and C. Werner, Correlation studies of JERS-1 SAR interferometry, Abstract of 1996 Earth and Planetary Science Joint Meeting, 87, 1996 (in Japanese).

  17. Zebker, H. A., C. L. Werner, P. A. Rosen, and S. Hensley, Accuracy of topographic maps derived from ERS-1 interferometric radar, IEEE Trans. Geosci. Remote Sens., 32, 823–836, 1994a.

  18. Zebker, H. A., P. A. Rosen, R. M. Goldstein, A. Gabriel, and C. L. Werner, On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake, J. Geophys. Res., 99, 19617–19634, 1994b.

  19. Zebker, H. A., P. A. Rosen, and S. Hensley, Atmospheric effects in interferometric synthetic aperture radar surface deformation and to-pographic maps, J. Geophys. Res., 102, 7547–7563, 1997.

Download references

Author information

Correspondence to Mikio Tobita.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tobita, M., Fujiwara, S., Ozawa, S. et al. Deformation of the 1995 North Sakhalin earthquake detected by JERS-1/SAR interferometry. Earth Planet Sp 50, 313–325 (1998) doi:10.1186/BF03352118

Download citation

Keywords

  • Digital Elevation Model
  • Constant Color
  • Radar Interferometry
  • Differential Interferogram
  • Systematic Fringe