Skip to main content

MU radar observations of tropopause variations by using clear air echo characteristics

Abstract

We present in this paper the characteristics of clear air echoes revealed by the MU radar experiments in Shigaraki, Japan (34° 51′ N, 136° 06′ E). In particular, we study a relation between atmospheric stability, represented by Brunt Väisälä frequency squared, N2, and both the vertical echo power and the aspect sensitivity. On August 24–25, 1991, echo power was collected by steering the zenith angle of the antenna beam of the MU radar from the zenith to 28° with a step of 2°. Aspect sensitive echoes were detected in the lower stratosphere and some regions in the troposphere. We found that a ratio of vertical echo power to oblique echo power at 10° can represent the magnitude of aspect sensitivity. We compared profiles of both the vertical echo power and the aspect sensitivity with N2, inferred from a radiosonde sounding at the radar site. Cross correlation analysis indicates that a rapid increase of both vertical echo power and the aspect sensitivity near the tropopause usually coincides with a step-wise enhancement of N2.

We also analyzed four other MU radar observations, continued 4–5 days each, and obtained a statistical results that the mean CCF values between profiles of N2 and vertical echo power and the aspect sensitivity are 0.89 and 0.86, respectively. Their mean lag distance was about 71 m and 134 m, with a standard deviation of 77 m and 176 m, respectively. That is, the increase in the vertical echo power and the aspect sensitivity generally occurred slightly higher altitude relative to a sharp increase in N2. However, we also found some exceptional cases when the lag distance was as large as several hundred meters or even negative.

References

  1. Balsley, B. B., The MST technique-a brief review, J. Atmos. Terr. Phys., 43, 495–509, 1981.

    Article  Google Scholar 

  2. Fukao, S., T. Sato, T. Tsuda, S. Kato, K. Wakasugi, and T. Makihira, The MU radar with an active phased array system: 1. Antenna and power amplifiers, Radio Sci., 20, 1155–1168, 1985a.

    Article  Google Scholar 

  3. Fukao, S., T. Sato, T. Tsuda, S. Kato, K. Wakasugi, and T. Makihira, The MU radar with an active phased array system: 2. In-house equipment, Radio Sci., 20, 1169–1176, 1985b.

    Article  Google Scholar 

  4. Gage, K. S. and B. B. Balsley, On the scattering and reflection mechanisms contributing to clear air radar echoes from the troposphere, stratosphere, and mesosphere, Radio Sci., 15, 407–416, 1980.

    Article  Google Scholar 

  5. Gage, K. S. and J. L. Green, Evidence for specular reflection from monostatic VHF radar observations of the stratosphere, Radio Sci., 13, 991–1001, 1978.

    Article  Google Scholar 

  6. Gage, K. S. and J. L. Green, Tropopause detection by partial specular reflection with VHF radar, Science., 203, 1238–1240, 1979.

    Article  Google Scholar 

  7. Gage, K. S. and J. L. Green, An objective method for the determination of tropopause height from VHF radar observation, J. Appl. Meteorol., 21, 1150–1154, 1982.

    Article  Google Scholar 

  8. Gage, K. S., W. L. Ecklund, and B. B. Balsley, A modified Fresnel scattering model for parameterization of Fresnel returns, Radio Sci., 20, 1493–1501, 1985.

    Article  Google Scholar 

  9. Green, J. L., K. S. Gage, and T. E. VanZandt, Atmospheric measurements by VHF pulsed Doppler radar, IEEE Transactions on Geoscience Electronics, GE-17, 1979.

  10. Hocking, W. K., Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review, Radio Sci., 20, 1403–1422, 1985.

    Article  Google Scholar 

  11. Hocking, W. K. and J. Röttger, Pulse length dependence of radar signal strengths for Fresnel backscatter, Radio Sci., 18, 1312–1324, 1983.

    Article  Google Scholar 

  12. Hocking, W. K., S. Fukao, T. Tsuda, M. Yamamoto, T. Sato, and S. Kato, Aspect sensitivity of stratospheric VHF radio wave scatterers, particularly above 15 km altitude, Radio Sci., 25, 613–627, 1990.

    Article  Google Scholar 

  13. Hocking, W. K., S. Fukao, M. Yamamoto, T. Tsuda, and S. Kato, Viscosity waves and thermal-conduction waves as a cause of “specular” reflectors in radar studies of the atmosphere, Radio Sci., 26, 1281–1303, 1991.

    Article  Google Scholar 

  14. Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, Stratosphere-Troposphere Exchange, Rev. Geophys., 33, 403–440, 1995.

    Article  Google Scholar 

  15. Larsen and J. Röttger, VHF and UHF Doppler radars as tools for synoptic research, Bull. Amer. Meteor. Soc., 63, 996–1008, 1982.

    Article  Google Scholar 

  16. Larsen and J. Röttger, Observations of frontal zone and tropopause structures with a VHF Doppler radar and radiosondes, Radio Sci., 20, 1223–1232, 1985.

    Article  Google Scholar 

  17. Ottersten, H., Mean vertical gradient of potential refractive index in turbulent mixing and radar detection of CAT, Radio Sci., 4, 1247–1249, 1969.

    Article  Google Scholar 

  18. Röttger, J., VHF radar observations of a frontal passage, J. Appl. Meteorol., 18, 85–91, 1979.

    Article  Google Scholar 

  19. Röttger, J., Structure and dynamics of the stratosphere and mesosphere revealed by VHF radar investigations, Pure and Appl. Geophys., 118, 494–527, 1980.

    Article  Google Scholar 

  20. Röttger, J., P. Czechowsky and G. Schmidt, First low-power VHF radar observations of tropospheric, stratospheric and mesospheric winds and turbulence at the Arecibo Observatory, J. Atmos. Terr. Phys., 43, 789–800, 1981.

    Article  Google Scholar 

  21. Tatarskii, The effects of the turbulent atmosphere on wave propagation, U.S. Dept. of Commerce, 1971.

  22. Tsuda, T., T. Sato, K. Hirose, S. Fukao, and S. Kato, MU radar observation of the aspect sensitivity of backscattered VHF echo power in the troposphere and lower stratosphere, Radio Sci., 21, 971–980, 1986.

    Article  Google Scholar 

  23. Tsuda, T., P. T. Pay, T. Sato, S. Kato, and S. Fukao, Simultaneous observations of reflection echoes and refractive index gradient in the troposphere and lower stratosphere, Radio Sci., 23, 655–665, 1988.

    Article  Google Scholar 

  24. Tsuda, T., T. E. VanZandt, M. Mizumoto, S. Kato, and S. Fukao, Spectral analysis of temperature and Brunt Väisälä frequency fluctuations observed by radiosondes, J. Geophys. Res., 96, 17265–17278, 1991.

    Article  Google Scholar 

  25. Tsuda, T., T. E. VanZandt, and H. Saito, Zenith-angle dependence of VHF specular reflection echoes in the lower atmosphere, J. Atmos. Terr. Phys., 59, 761–775, 1997.

    Article  Google Scholar 

  26. VanZandt, T. E. and R. A. Vincent, Is VHF Fresnel reflectivity due to lowfrequency buoyancy waves?, Handbook for MAP, Middle Atmosphere Program, University of Illinois, Urbana, 9, 78–80, 1983.

    Google Scholar 

  27. VanZandt, T. E., J. L. Green, K. S. Gage, and W. L. Clark, Vertical profiles of reflectivity turbulence structure constant: Comparison of observations by the Sunset radar with a new theoretical model, Radio Sci., 13, 819–829, 1978.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Hermawan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hermawan, E., Tsuda, T. & Adachi, T. MU radar observations of tropopause variations by using clear air echo characteristics. Earth Planet Sp 50, 361–370 (1998). https://doi.org/10.1186/BF03352122

Download citation

Keywords

  • Radar
  • Zenith Angle
  • Cross Correlation Function
  • Lower Stratosphere
  • Tropopause Height