Skip to main content
  • Article
  • Published:

Coulomb lifetime of the ring current ions with time varying plasmasphere

Abstract

We have developed a time-dependent model of the plasmasphere to evaluate the spatial variation of the Coulomb lifetime of ring current ions. Coulomb collision has been considered to be one of major loss processes of the ring current ions interacted with the thermal plasma in the plasmasphere. The distribution of plasmaspheric density is derived by a continuity equation under the hydrostatic assumption. The protons supplied from both conjugate ionospheres are drifted by a time-dependent convection field and a corotation electric field. Calculated profiles of the number density and the relative motion of the plasmasphere are in fairly good agreement with the observational results by EXOS-B satellite. We traced the energetic ions during a storm on June 4–8, 1991 and calculated the differential flux and the pressure to examine the loss effects on the pressure due to the both loss processes. We found that (1) the Coulomb collision loss restrictively affects at L ≤ 3 because the plasmasphere drastically shrank due to the strong convection, and that (2) there is no significant change in the ion composition ratio during the initial rapid recovery of Dst, i.e., the rapid recovery of Dst is not caused by the short charge exchange lifetime of O+ ions for this particular storm.

References

  • Banks, P. M. and G. Kockarts, Aeronomy, Part B, 355 pp., Academic Press, New York, 1973.

    Google Scholar 

  • Baumjohann, W. and G. Paschmann, Average plasma properties in the central plasmasheet, J. Geophys. Res., 94, 6597–6606, 1989.

    Article  Google Scholar 

  • Bilitza, D., International reference ionosphere: Recent developments, Radio Sci., 21, 343–346, 1986.

    Article  Google Scholar 

  • Brice, N. M., Bulk motion of the magnetosphere, J. Geophys. Res., 72, 5193–5211, 1967.

    Article  Google Scholar 

  • Carpenter, D. L., Whistler studies of the plasmapause in the magnetosphere, J. Geophys. Res., 71, 693–709, 1966.

    Article  Google Scholar 

  • Carpenter, D. L. and R. R. Anderson, An ISEE/Whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097–1108, 1992.

    Article  Google Scholar 

  • Chamberlain, J. W., Planetary coronae and atmospheric evaporation, Planet. Space Sci., 11, 901–960, 1963.

    Article  Google Scholar 

  • Chappell, C. R., K. K. Harris, and G. W. Sharp, The morphology of the bulge region of the plasmasphere, J. Geophys. Res., 75, 3848–3861, 1970.

    Article  Google Scholar 

  • Chen, A. J. and R. A. Wolf, Effects on the plasmasphere of a time-varying convection electric field, Planet. Space Sci., 20, 483–509, 1972.

    Article  Google Scholar 

  • Cladis, J. B. and and W. E. Francis, The polar ionosphere as a source of the storm time ring current, J. Geophys. Res., 90, 3465–3473, 1985.

    Article  Google Scholar 

  • Daglis, I. A., S. Livi, E. T. Sarris, and B. Wilken, Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms, J. Geophys. Res., 99, 5691–5703, 1994.

    Article  Google Scholar 

  • Dessler, A. J. and E. N. Parker, Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239–2252, 1959.

    Article  Google Scholar 

  • Ebihara, Y., H. Miyaoka, F. Tohyama, and M. Ejiri, Loss effects for energetic protons associated with a magnetic storm in the inner magnetosphere, Proc. NIPR Symp. Upper Atmos. Phys., 10, 16–28, 1997.

    Google Scholar 

  • Ejiri, M., Trajectory traces of charged particles in the magnetosphere, J. Geophys. Res., 83, 4798–4810, 1978.

    Article  Google Scholar 

  • Ejiri, M., K. Tsuruda, Y. Watanabe, A. Nishida, and T. Obayashi, Impedance and electric field observations in the magnetosphere with satellite JIKIKEN(EXOS-B), J. Geomag. Geoelectr., 33, 101–110, 1981.

    Article  Google Scholar 

  • Fok, M.-C., J. U. Kozyra, A. F. Nagy, and T. E. Cravens, Lifetime of ring current particles due to Coulomb collisions in the plasmasphere, J. Geophys. Res., 96, 7861–7867, 1991.

    Article  Google Scholar 

  • Fok, M.-C., T. E. Moore, J. U. Kozyra, G. C. Ho, and D. C. Hamilton, Threedimensional ring current decay model, J. Geophys. Res., 100, 9619–9632, 1995.

    Article  Google Scholar 

  • Gallagher, D. L., P. D. Craven, R. H. Comfort, and T. E. Moore, On the azimuthal variation of core plasma in the equatorial magnetosphere, J. Geophys. Res., 100, 23597–23605, 1995.

    Article  Google Scholar 

  • Grebowsky, J. M. and A. J. Chen, Effects of convection electric field on the distribution of ring current type protons, Planet. Space Sci., 23, 1045–1052, 1975.

    Article  Google Scholar 

  • Grebowsky, J. M., Y. Tulunay, and A. J. Chen, Temporal variations in the dawn and dusk midlatitude trough and plasmapause, Planet. Space Sci., 22, 1089–1099, 1974.

    Article  Google Scholar 

  • Guiter, S. M., T. I. Gombosi, and C. E. Rasmussen, Two-stream modeling of plasmaspheric refilling, J. Geophys. Res., 100, 9519–9526, 1995.

    Article  Google Scholar 

  • Hedin, A. E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649–4662, 1987.

    Article  Google Scholar 

  • Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.

    Article  Google Scholar 

  • Horwitz, J. L., R. H. Comfort, and C. R. Chappell, A statistical characterization of plasmasphere density structure and boundary locations, J. Geophys. Res., 95, 7937–7947, 1990.

    Article  Google Scholar 

  • Janev, R. K. and J. J. Smith, Cross sections for collision processes of hydrogen atoms with electrons, protons, and multipli-charged ions, Atomic and Plasma-Material Interaction Data for Fusion, IAEA, 4, 78–79, 1993.

    Google Scholar 

  • Khazanov, G. V., M. A. Koen, Y. V. Konikov, and I. M. Sidorov, Simulation of ionosphere-plasmasphere coupling taking into account ion inertia and temperature anisotropy, Planet. Space Sci., 32, 585–598, 1984.

    Article  Google Scholar 

  • Kistler, L. M., F. M. Ipavich, D. C. Hamilton, G. Gloeckler, B. Wilken, G. Kremser, and W. Studemann, Energy spectra of the major ion species in the ring current during geomagnetic storms, J. Geophys. Res., 94, 3579–3599, 1989.

    Article  Google Scholar 

  • Lennartsson, W. and E. G. Shelley, Survey of 0.1-to 16-keV/e plasma sheet ion composition, J. Geophys. Res., 91, 3061–3076, 1986.

    Article  Google Scholar 

  • Li, W., J. J. Sojka, and W. J. Raitt, A study of plasmaspheric density distributions for diffusive equilibrium conditions, Planet. Space Sci., 31, 1315–1327, 1983.

    Article  Google Scholar 

  • Liemohn, H., The lifetime of radiation belt protons with energies between 1 keV and 1 MeV, J. Geophys. Res., 66, 3593–3595, 1961.

    Article  Google Scholar 

  • Lin, J., J. L. Horwitz, G. R. Wilson, C. W. Ho, and D. G. Brown, A semikinetic model for early stage plasmasphere refilling 2. Effects of waveparticle interactions, J. Geophys. Res., 97, 1121–1134, 1992.

    Article  Google Scholar 

  • Marubashi, K. and J. M. Grebowsky, A model study of diurnal behavior of the ionosphere and the protonosphere coupling, J. Geophys. Res., 81, 1700–1706, 1976.

    Article  Google Scholar 

  • Maynard, N. C. and A. J. Chen, Isolated cold plasma regions: Observations and their relation to possible production mechanisms, J. Geophys. Res., 80, 1009–1013, 1975.

    Article  Google Scholar 

  • Mayr, H. G., J. M. Grebowsky, and H. A. Taylor, Jr., Study of the thermal plasma on closed field lines outside the plasmasphere, Planet. Space Sci., 18, 1123–1135, 1970.

    Article  Google Scholar 

  • Moffett, R. J. and J. A. Murphy, Coupling between the F-region and protonosphere: Numerical solution of the time-dependent equations, Planet. Space Sci., 21, 43–52, 1973.

    Article  Google Scholar 

  • Moldwin, M. B., M. F. Thomsen, S. J. Bame, D. McComas, and G. D. Reeves, The fine-scale structure of the outer plasmasphere, J. Geophys. Res., 100, 8021–8029, 1995.

    Article  Google Scholar 

  • Nishida, A., Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail, J. Geophys. Res., 71, 5669–5679, 1966.

    Article  Google Scholar 

  • Olsen, R. C., S. D. Shawhan, D. L. Gallagher, J. L. Green, C. R. Chappell, and R. R. Anderson, Plasma observations at the Earth’s magnetic equator, J. Geophys. Res., 92, 2385–2407, 1987.

    Article  Google Scholar 

  • Peterson, W. K., R. D. Sharp, E. G. Shelley, and R. G. Johnson, Energic ion composition of the plasmasheet, J. Geophys. Res., 86, 761–767, 1981.

    Article  Google Scholar 

  • Rairden, R. L., L. A. Frank, and J. D. Craven, Geocoronal imaging with Dynamic Explorer, J. Geophys. Res., 91, 13613–13630, 1986.

    Article  Google Scholar 

  • Raitt, W. J., R. W. Schunk, and P. M. Banks, A comparison of the temperature and density structure in high and low speed thermal proton flows, Planet. Space Sci., 23, 1103–1117, 1975.

    Article  Google Scholar 

  • Rasmussen, C. E., S. M. Guiter, and S. G. Thomas, A two-dimensional model of the plasmasphere: refilling time constants, Planet. Space Sci., 41, 35–43, 1993.

    Article  Google Scholar 

  • Roeder, J. L., J. F. Fennell, M. W. Chen, M. Grande, S. Livi, and M. Schulz, CRRES observations of stormtime ring current ion composition, AIP Conf. Proc., Workshop on the Earth’s Trapped Particle Environment, No. 383, 131-135, 1996.

  • Roederer, J. G., Dynamics of Geomagnetically Trapped Radiation, 166 pp., Springer-Verlag, Berlin Heidelberg, 1970.

    Book  Google Scholar 

  • Sharp, R. D., W. Lennartsson, W. K. Peterson, and E. G. Shelley, The origins of the plasma in the distant plasma sheet, J. Geophys. Res., 87, 10420–10424, 1982.

    Article  Google Scholar 

  • Singh, N. and C. B. Chan, Effects of equatorially trapped ions on refilling of the plasmasphere, J. Geophys. Res., 97, 1167–1179, 1992.

    Article  Google Scholar 

  • Smith, P. H. and N. K. Bewtra, Charge exchange lifetimes for ring current ions, Space Sci. Rev., 22, 301–318, 1978.

    Article  Google Scholar 

  • Smith, P. H., R. A. Hoffman, and T. A. Fritz, Ring current proton decay by charge exchange, J. Geophys. Res., 81, 2701–2708, 1976.

    Article  Google Scholar 

  • Stern, D. P., The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80, 595–599, 1975.

    Article  Google Scholar 

  • Takahashi, S., T. Iyemori, and M. Takeda, A simulation of the storm-time ring current, Planet. Space Sci., 38, 1133–1141, 1990.

    Article  Google Scholar 

  • Thomsen, M. F., J. E. Borovsky, D. J. McComas, and M. B. Moldwin, Observations of the Earth’s plasmasheet at geosynchronous orbit, AIP Conf. Proc., Workshop on the Earth’s Trapped Particle Environment, No. 383, 25-31, 1996.

  • Volland, H., A semiempirical model of large-scale magnetospheric electric fields, J. Geophys. Res., 78, 171–180, 1973.

    Article  Google Scholar 

  • Wentworth, R. C., W. M. MacDonald, and S. F. Singer, Lifetimes of trapped radiation belt particles determined by Coulomb scattering, Phys. Fluids, 2, 499–509, 1959.

    Article  Google Scholar 

  • Wilson, G. R., J. L. Horwitz, and J. Lin, A semikinetic model for early stage plasmasphere refilling 1. Effects of Coulomb collisions, J. Geophys. Res., 97, 1109–1119, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Ebihara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebihara, Y., Ejiri, M. & Miyaoka, H. Coulomb lifetime of the ring current ions with time varying plasmasphere. Earth Planet Sp 50, 371–382 (1998). https://doi.org/10.1186/BF03352123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352123

Keywords