Skip to main content

Effects of geometry on the convection with core-cooling

Abstract

We study the dynamical (three-dimensional box, axisymmetric and spherical shell geometry) and parameterized models of the mantle convection with the core-cooling. The viscosity is constant in space and dependent on the volume averaged mantle temperature. Core is treated as a hot bath. To understand the process of cooling, we use the ‘local’ Rayleigh (Ral ) and Nusselt (Nul) numbers, which are defined in each thermal boundary layer. In the dynamical calculations, we check the various combinations of Ral and Nul, and find that the local Rayleigh number either at the top or bottom surface may control both the top and bottom local Nusselt numbers. This result suggests that the core-cooling in this case may be controlled by the flow either at top or bottom boundary layer. The least-square-fitting of Nul-Ral relationship shows that its power-law index is around 0.3, despite of the different geometry. Comparing the thermal history calculated by the dynamical and parameterized models, we find that the parameterized convection theory based on the local Ra-Nu relationship obtained by the dynamical calculation is useful for investigating the thermal history of the mantle and core. Applying the parameterized theory to the Earth, we find that the plausible Urey ratio is smaller than that obtained by the previous works which ignored the bottom thermal boundary layer.

References

  • Arkani-Hamed, J., Effects of the core cooling on the internal dynamics and thermal evolution of terrestrial planets, J. Geophys. Res., 99, 12109–12119, 1994.

    Article  Google Scholar 

  • Christensen, U. R., Heat transport by variable viscosity convection and implications for the Earth’s thermal evolution, Phys. Earth Planet. Inter., 35, 264–282, 1984.

    Article  Google Scholar 

  • Christensen, U. R., Thermal evolution models for the earth, J. Geophys. Res., 90, 2995–3007, 1985.

    Article  Google Scholar 

  • Davies, G. F., Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth, J. Geophys. Res., 85, 2517–2530, 1980.

    Article  Google Scholar 

  • Davies, G. F., Cooling the core and mantle by plume and plate flows, Geophys. J. Int., 115, 132–146, 1993.

    Article  Google Scholar 

  • Honda, S., A simple parameterized model of Earth’s thermal history with the transition from layered to whole mantle convection, Earth Planet. Sci. Lett., 131, 357–369, 1995.

    Article  Google Scholar 

  • Honda, S., Local Rayleigh and Nusselt numbers for cartesian convection with temperature-dependent viscosity, Geophys. Res. Lett., 23, 2445–2448, 1996.

    Article  Google Scholar 

  • Honda, S. and Y. Iwase, Comparison of the dynamical and parameterized models of mantle convection including core-cooling, Earth Planet. Sci. Lett., 139, 133–146, 1996.

    Article  Google Scholar 

  • Honda, S. and D. A. Yuen, Cooling model of mantle convection with phase changes: effects of aspect ratio and initial conditions, J. Phys. Earth, 42, 165–186, 1994.

    Article  Google Scholar 

  • Howard, L. N., Convection at high Rayleigh number, in Proc. 11th Int. Cong. Appl. Math., edited by H. Görtler, pp. 1109–1115, Springer-Verlag, New York, 1966.

    Google Scholar 

  • Iwase, Y., Three-dimensional infinite Prandtl number convection in a spherical shell with temperature-dependent viscosity, J. Geomag. Geoelectr., 48, 1499–1514, 1996.

    Article  Google Scholar 

  • Iwase, Y. and S. Honda, An interpretation of the Nusselt-Rayleigh number relationship for convection in a spherical shell, Geophys. J. Int., 130, 801–804, 1997.

    Article  Google Scholar 

  • McKenzie, D. P. and N. O. Weiss, Speculations on the thermal and tectonic history of the earth, Geophys. J. R. Astron Soc., 42, 131–174, 1975.

    Article  Google Scholar 

  • Nakakuki, T., Studies of convection in the mantle with the phase and the chemical boundaries by numerical simulations, Ph.D. Thesis, Ocean Research Institute, Univ. Tokyo, 1993.

    Google Scholar 

  • Patankar, S. V., Numerical Heat Transfer and Fluid Flow, 197pp., Hemisphere Pub. Corp., New York, 1980.

    Google Scholar 

  • Ratcliff, J. T., G. Schubert, and A. Zebib, Steady tetrahedral and cubic patterns of spherical-shell convection with temperature-dependent viscosity, J. Geophys. Res., 101, 25473–25484, 1996.

    Article  Google Scholar 

  • Schubert, G., Numerical models of mantle convection, Annu. Rev. Fluid Mech., 24, 359–394, 1992.

    Article  Google Scholar 

  • Schubert, G., P. Cassen, and R. E. Young, Subsolidus convective cooling histories of terrestrial planets, Icarus, 38, 192–211, 1979.

    Article  Google Scholar 

  • Stacey, F. D., Cooling of the earth—A constraint on paleotectonic hypotheses, in Evolution of the Earth, edited by R. J. O’Connell and W. S. Fyfe, Geodyn. Ser., vol. 5, pp. 272–276, AGU, Washington, 1981.

    Chapter  Google Scholar 

  • Steinbach, V., D. A. Yuen, and W. Zhao, Instabilities from phase transitions and the timescales of mantle convection, Geophys. Res. Lett., 20, 1119–1122, 1993.

    Article  Google Scholar 

  • Stevenson, D. J., T. Spohn, and G. Schubert, Magnetism and thermal evolution of the terrestrial planets, Icarus, 54, 466–489, 1983.

    Article  Google Scholar 

  • Tackley, P. J., Effects of strongly temperature-dependent viscosity on time-dependent, three-dimensional models of mantle convection, Geophys. Res. Lett., 20, 2187–2190, 1993.

    Article  Google Scholar 

  • Turcotte, D. L. and G. Schubert, Geodynamics, 450pp., John Wiley, New York, 1982.

    Google Scholar 

  • van den Berg, A. P. and D. A. Yuen, Convectively induced transition in mantle rheological behavior, Geophys. Res. Lett., 22, 1549–1552, 1995.

    Article  Google Scholar 

  • Yuen, D. A., S. Balachandar, V. C. Steinbach, S. Honda, D. M. Reuteler, J. J. Smedsmo, and G. S. Lauer, Non-equilibrium effects of core-cooling and time-dependent internal heating on mantle flush events, Nonlinear Process. Geophys., 2, 206–221, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Iwase.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iwase, Y., Honda, S. Effects of geometry on the convection with core-cooling. Earth Planet Sp 50, 387–395 (1998). https://doi.org/10.1186/BF03352125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352125

Keywords

  • Nusselt Number
  • Rayleigh Number
  • Thermal History
  • Spherical Shell
  • Thermal Boundary Layer