Skip to main content

A shallow volatile layer at Chryse Planitia, Mars


We have investigated size distribution of rampart craters in the east edge of Chryse Planitia on Mars by Viking high resolution images. Clear existence of the onset diameter of rampart crater, which defines the minimum size of the rampart crater, has been recognized. If this diameter corresponds to the depth to the top of the volatile layer, the converted depth ranges from 20 m to 60 m. These values are systematically shallower than the previous estimates (Kuzmin, 1988). Martian volatile layer is thought as a main reservoir of the ancient fluvial processes and atmospheric water vapor. This shallow volatile layer gives us information of the inventory of Martian water and conditions of cryosphere.


  • Boyce, J. M., Distribution of thermal gradient values in the equatorial region of Mars based on impact crater morphology, Reports of Planetary Geology Program-1980 NASA TM 82385, 140–143, 1980.

  • Carr, M. H., Water on Mars, 229pp., Oxford Univ. Press, New York, 1996.

    Google Scholar 

  • Carr, M. H., et al., Martian impact craters and emplacement of ejecta by surface flow, J. Geophys. Res., 82, 4,055–4,065, 1977.

    Article  Google Scholar 

  • Clifford, S. M., A model for the hydrologic and climatic behavior of water on Mars, J. Geophys. Res., 98, 10,973–11,016, 1993.

    Article  Google Scholar 

  • Costard, F. M., The spatial distribution of volatiles in the Martian hydrolithosphere, Earth Moon Planets, 45, 265–290, 1989.

    Article  Google Scholar 

  • Costard, F. M. and J. S. Kargel, Outwash plains and thermokarst on Mars, Icarus, 114, 93–112, 1995.

    Article  Google Scholar 

  • Croft, S. K., Cratering flow fields: Implications for the excavation and transient expansion stages of crater formation, Proc. Lunar Planet. Sci. Conf., 11, 2,347–2,378, 1980. Fanale, F. P. et al., Global distribution and migration of sub-surface ice on Mars, Icarus, 67, 1–18, 1986.

    Google Scholar 

  • Grieve, R. A. F., Terrestrial impact structures, Ann. Rev. Earth Planet. Sci., 15, 245–270, 1987.

    Article  Google Scholar 

  • Grieve, R. A. F. and J. B. Garvin, A geometric model for excavation and modification at terrestrial simple craters, J. Geophys. Res., 89, 11,561–11,572, 1984.

    Article  Google Scholar 

  • Jakosky, B. M. and J. H. Jones, The history of Martian volatiles, Rev. Geophys., 35, 1–16, 1997.

    Article  Google Scholar 

  • Kuzmin, R. O., Structure inhomogeneities of the Martian cryosphere, Solar System Res., 22, 195–212, 1988 (compiled by S. W. Squyres et al., Chapt. 16 in Mars, 1489pp., Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  • McSween, H. Y., What we have learned about Mars from SNC meteorites, Meteoritics, 29, 757–779, 1994.

    Article  Google Scholar 

  • Melosh, H. J., Impact Cratering, 245pp., Oxford Univ. Press, New York, 1989.

    Google Scholar 

  • Mouginis-Mark, P. J., Morphology of Martian rampart craters, Nature, 272, 691–694, 1978.

    Article  Google Scholar 

  • Mouginis-Mark, P. J., Ejecta emplacement and modes of formation of Martian fluidized ejecta craters, Icarus, 45, 60–76, 1981.

    Article  Google Scholar 

  • Mouginis-Mark, P. J., Water or ice in the Martian regolith?: clues from rampart craters seen at very high resolution, Icarus, 71, 268–286, 1987.

    Article  Google Scholar 

  • Pike, R. J., Control of crater morphology by gravity and target type: Mars, Earth, Moon., Proc. Lunar Planet. Sci., 11th, 2,159–2,189, 1980.

    Google Scholar 

  • Pike, R. J., Mercury, Chapt. 7, 794pp., Univ. Arizona Press, Tucson, 1988.

    Google Scholar 

  • Rotto, S. and K. L. Tanaka, Geologic/geomorphologic map of the Chryse Planitia Region of Mars, U.S. Geological Survey MAP I-2441, 1995.

  • Scott, D. H. et al., Map of Mars showing channels and possible paleolake basins, U.S. Geological Survey MAP I-2461, 1995.

  • Sleep, N. H., Martian plate tectonics, J. Geophys. Res., 99, 5,639–5,655, 1994.

    Article  Google Scholar 

  • Spudis, P. D., The Geology of Multi-Ring Impact Basins, 263pp., Cambridge Univ. Press, Cambridge, 1993.

    Book  Google Scholar 

  • Stoffler, D. et al., Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta, J. Geophys. Res., 80, 4,062–4,077, 1975.

    Article  Google Scholar 

  • Tanaka, K. L., Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars, J. Geophys. Res., 102, 4,131–4,149, 1997.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hirohide Demura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demura, H., Kurita, K. A shallow volatile layer at Chryse Planitia, Mars. Earth Planet Sp 50, 423–429 (1998).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Landing Site
  • Impact Crater
  • Atmospheric Water Vapor
  • Lunar Planet
  • Martian Surface