Skip to main content

A numerical study of the Martian atmospheric convection with a two-dimensional anelastic model


Thermal convection of the Martian lower atmosphere is examined by the use of a two-dimensional anelastic model with a resolution fine enough to describe convection eddies.

For a homogeneous radiative cooling of 50 K/day given in the layer below 5 km, a layer of time-dependent convection develops up to about 6 km in height. The intensity of realized vertical winds ranges up to 20 m/s. The dust, which is injected into the lowest layer and treated as a passive tracer, is transported immediately in the convection layer and mixed uniformly.

The intensity of the horizontal winds near the surface reaches about 10 m/s, which, combined with large-scale motions, is expected to contribute to the dust injection into the atmosphere.


  • Conrath, B. J., Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971, Icarus, 24, 36–46, 1975.

    Article  Google Scholar 

  • Fovell, R. G. and Y. Ogura, Numerical simulation of a midlatitude squall line in two dimensions, J. Atmos. Sci., 45, 3846–3879, 1988.

    Article  Google Scholar 

  • Greeley, R., R. Leach, B. R. White, J. D. Iversen, and J. B. Pollack, Threshold wind speeds for sand on Mars: wind tunnel simulations, Geophys. Res. Lett., 7, 121–124, 1980.

    Article  Google Scholar 

  • Greeley, R., A. Skypeck, and J. B. Pollack, Martian aeolian features and deposits: comparisons with general circulation model results, J. Geophys. Res., 98, 3183–3196, 1993.

    Article  Google Scholar 

  • Haberle, R. M., H. C. Houben, R. Hertenstein, and T. Herdtle, A boundary-layer mode for Mars: comparison with Viking lander and entry data, J. Atmos. Sci., 50, 1544–1559, 1993.

    Article  Google Scholar 

  • Hess, S. L., R. M. Henry, C. B. Leovy, J. A. Ryan, and J. E. Tillman, Meteorological results from the surface of Mars: Viking I and II, J. Geophys. Res., 82, 4559–4574, 1977.

    Article  Google Scholar 

  • James, P. B., R. T. Clancy, S. W. Lee, L. J. Martin, R. B. Singer, E. Smith, R. A. Kahn, and R. W. Zurek, Monitoring Mars with the Hubble space telescope: 1990–1991 observations, Icarus, 109, 79–101, 1994.

    Article  Google Scholar 

  • Klemp, J. B. and R. B. Wilhelmson, The simulation of three-dimensional convective storm dynamics, J. Atmos. Sci., 35, 1070–1096, 1978.

    Article  Google Scholar 

  • Martin, T. Z., A. R. Peterfreund, E. D. Miner, H. H. Kieffer, and G. E. Hunt, Thermal infrared properties of the Martian atmosphere 1. Global behavior at 7, 9, 11 and 20-μm, J. Geophys. Res., 84, 2830–2842, 1979.

    Article  Google Scholar 

  • Murphy, J. R., R. M. Haberle, O. B. Toon, and J. B. Pollack, Martian global dust storms: zonally symmetric numerical simulation including size-dependent particle transport, J. Geophys. Res., 98, 3197–3220, 1993.

    Article  Google Scholar 

  • Nakajima, K., Direct numerical experiments on the large-scale organizations of cumulus convection, Ph.D. Thesis, University of Tokyo, 1994 (in Japanese).

  • Nakajima, K. and T. Matsuno, Numerical experiments concerning the origin of cloud clusters in the tropical atmosphere, J. Met. Soc. Japan, 66, 309–329, 1988.

    Google Scholar 

  • Ogura, Y. and N. A. Phillips, Scale analysis of deep and shallow convection in the atmosphere, J. Atmos. Sci., 19, 173–179, 1962.

    Article  Google Scholar 

  • Pollack, J. B., D. S. Colburn, F. M. Flaser, R. Kahn, C. E. Carlston, and D. Pidek, Properties and effects of dust particles suspended in the Martian atmosphere, J. Geophys. Res., 84, 2929–2945, 1979.

    Article  Google Scholar 

  • Tao, W.-K., S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou, Mechanisms of cloud-radiation interaction in the tropics and midlatitude, J. Atmos. Sci., 53, 2624–2651, 1996.

    Article  Google Scholar 

  • Vallis, G. K., G. J. Shutts, and M. E. B. Gray, Balanced mesoscale motion and stratified turbulence forced by convection, Q. J. R. Met. Soc., 123, 1621–1652, 1997.

    Article  Google Scholar 

  • Wilson, R. J. and K. Hamilton, Comprehensive model simulation of thermal tides in the Martian atmosphere, J. Atmos. Sci., 53, 1290–1326, 1996.

    Article  Google Scholar 

  • Zurek, R. W., J. R. Barnes, R. M. Haberle, J. B. Pollack, J. E. Tillman, and C. B. Leovy, Dynamics of the atmosphere of Mars, in Mars, edited by H. H. Kieffer, B. M. Jakosky, C. W. Snyder, and M. S. Matthews, pp. 835–933, University of Arizona Press, U.S.A., 1992.

Download references

Author information



Corresponding author

Correspondence to Masatsugu Odaka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Odaka, M., Nakajima, K., Takehiro, S. et al. A numerical study of the Martian atmospheric convection with a two-dimensional anelastic model. Earth Planet Sp 50, 431–437 (1998).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Dust
  • Convection
  • Potential Temperature
  • Dust Storm
  • Thermal Boundary Layer