Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Model calculations of the planetary ion distribution in the Martian tail


Based on a recent model of the Martian atmosphere/exosphere and a model of the magnetic field and solar wind flow around Mars, the distribution of different planetary ion species in the near tail is calculated. Three main regions are identified: 1) “clouds” of pickup ions with distinct mass separation travel along cycloidal trajectories; 2) another group of ions forms a distinct plasma mantle in the magnetosphere; 3) a third population fills up the plasma sheet. Further, the energy of ions in different locations is also analyzed. Finally, comparison of observations made onboard the Phobos-2 spacecraft shows a reasonable agreement with simulation results.


  1. Barabash, S. and O. Norberg, Indirect detection of the Martian helium corona, Geophys. Res. Lett., 21, 1547–1550, 1994.

  2. Barabash, S., E. Kallio, R. Lundin, and H. Koskinen, Measurements of the nonthermal helium escape from Mars, J. Geophys. Res., 100, 21307–21316, 1995.

  3. Chamberlain, J. W. and D. M. Hunten, Theory of Planetary Atmospheres, 481 pp., Academic Press, 1987.

  4. Dubinin, E., R. Lundin, O. Norberg, and N. Pissarenko, Ion acceleration in the Martian tail: Phobos observations, J. Geophys. Res., 98, 3991–3997, 1993a.

  5. Dubinin, E., R. Lundin, H. Koskinen, and O. Norberg, Cold ions at the Martian bow shock: Phobos observations, J. Geophys. Res., 98, 5617–5623, 1993b.

  6. Dubinin, E., K. Sauer, R. Lundin, O. Norberg, J.-G. Trotignon, K. Schwingenschuh, M. Delva, and W. Riedler, Plasma characteristics of the boundary layer in the Martian magnetosphere, J. Geophys. Res., 101, 27061–27075, 1996.

  7. Harold, J. B. and A. B. Hassam, Two ion fluid numerical investigation of solar wind gas releases, J. Geophys. Res., 99, 19325–19340, 1994.

  8. Kallio, E., H. Koskinen, S. Barabash, C. Nairn, and K. Schwingenschuh, Oxygen outflow in the Martian magnetotail, Geophys. Res. Lett., 22, 2449–2452, 1995.

  9. Krasnopolsky, V. A. and G. R. Gladstone, Helium on Mars: EUVE and Phobos data and implications for Mars’ evolution, J. Geophys. Res., 101, 15765–15772, 1996.

  10. Krasnopolsky, V. A., S. Bowyer, S. Chakrabarti, G. R. Gladstone, and J. S. McDonald, First measurements of helium on Mars: implications for the problem of radiogenic gases on the terrestrial planets, Icarus, 109, 337–351, 1994.

  11. Lichtenegger, H. and E. Dubinin, Solar wind absorption and loss rates of planetary ions in the Martian environment during solar minimum and maximum activity, Austrian Academy of Sciences, Report IWF9801, 1–11, 1998.

  12. Lichtenegger, H., K. Schwingenschuh, E. Dubinin, and R. Lundin, Particle simulation in the Martian magnetotail, J. Geophys. Res., 100, 21659–21667, 1995.

  13. Lichtenegger, H., E. Dubinin, and W.-H. Ip, The depletion of the solar wind near Mars, Adv. Space Res., 20 (2), 143–147, 1997.

  14. Luhmann, J. G., A model of the ion wake of Mars, Geophys. Res. Lett., 17, 869–872, 1990.

  15. Luhmann, J. G., A model of the ionospheric tail rays of Venus, J. Geophys. Res., 98, 17615–17621, 1993.

  16. Luhmann, J. G. and K. Schwingenschuh, A model of the energetic ion environment of Mars, J. Geophys. Res., 95, 939–945, 1990.

  17. Lundin, R., B. Hultqvist, S. Olsen et al., The ASPERA experiment on the Soviet Phobos spacecraft, in Solar System Plasma Physics, Geophys. Monogr. Ser., Vol. 54, edited by J. H. Waite, R. L. Burch, and T. Moore, pp. 417–424, AGU, Washington, D.C., 1989a.

  18. Lundin, R., A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E. Dubinin, S. Barabash, I. Liede, and H. Koskinen, First measurements of the ionospheric plasma escape from Mars, Nature, 341, 609–612, 1989b.

  19. Lundin, R., A. Zakharov, R. Pellinen, S. Barabash, H. Borg, E. Dubinin, B. Hultqvist, and H. Koskinen, ASPERA/PHOBOS measurements of the ion outflow from the Martian ionosphere, Geophys. Res. Lett., 17, 873–876, 1990.

  20. Norberg, O., S. Barabash, and R. Lundin, Observations of molecular ions in the Martian plasma environment, in Plasma Environment of Nonmagnetic Planets, COSPAR colloq. ser. Vol. 4, edited by T. Gombosi, pp. 299–304, Pergamon, New York, 1993.

  21. Rosenbauer, H., N. Shutte, I. Apathy et al., Ions of Martian origin and plasma sheet in the Martian magnetosphere:L initial results of the TAUS experiment, Nature, 341, 612–614, 1989.

  22. Spreiter, J. R. and S. S. Stahara, Solar wind flow past Venus: Theory and comparisons, J. Geophys. Res., 85, 7715–7738, 1980.

  23. Tanaka, T., Configurations of solar wind flow and magnetic field around the planets with no magnetic field: Calculation by a new MHD simulation scheme, J. Geophys. Res., 98, 17251–17262, 1993.

  24. Verigin, M., N. Shutte, A. Galeev, K. Gringauz et al., Ions of planetary origin in the Martian magnetosphere (Phobos-2/TAUS experiment), Planet. Space Sci., 39, 131–137, 1991.

  25. Wallis, M. K. and A. D. Johnstone, Implanted ions and the draped cometary field, in Cometary Exploration, Vol. 1, edited by T. Gombosi, 311 pp., Central Institute for Physics, Hungarian Academy of Sciences, 1983.

Download references

Author information



Corresponding author

Correspondence to Herbert Lichtenegger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lichtenegger, H., Dubinin, E. Model calculations of the planetary ion distribution in the Martian tail. Earth Planet Sp 50, 445–452 (1998).

Download citation


  • Solar Wind
  • Interplanetary Magnetic Field
  • Plasma Sheet
  • Solar Wind Flow
  • Ambipolar Electric Field