- Article
- Open access
- Published:
“Phobos events”—Signatures of solar wind interaction with a gas torus?
Earth, Planets and Space volume 50, pages 453–462 (1998)
Abstract
Following recent simulations of the Phobos dust belt formation (Krivov and Hamilton, 1997), the effective dust-induced charge density as estimated is too small to account for the significant solar wind (sw) plasma and magnetic field perturbations observed by the Phobos-2 spacecraft in 1989 near the crossings of the Phobos orbit. In this paper the sw interaction with the Phobos neutral gas torus is re-investigated in a two-ion plasma model in which the newly created ions are treated as unmagnetized, forming a beam (not a ring beam) in the sw frame. A linear instability analysis based on both a cold fluid and a kinetic approach shows that electromagnetic ion beam waves in the whistler range of frequencies, driven most unstable at oblique propagation and appearing as almost purely growing waves in the beam frame, aquire high growth rates and provide a likely mechanism to cause the observed events.
References
Baumgärtel, K. and K. Sauer, Interaction of a magnetized plasma stream with an immobile ion cloud, Ann. Geophys., 10, 763–771, 1992.
Baumgärtel, K. and K. Sauer, Biion fluid description of plasma dust interaction: relevance to Phobos events, Adv. Space Res., 13, (10) 291–294, 1993.
Baumgärtel, K., K. Sauer, A. Bogdanov, E. Dubinin, and M. Dougherty, ‘Phobos Events’: signature of solar wind dust interaction, Planet. Space Sci., 44, 589–601, 1996.
Bogdanov, A. V., Mars satellite Deimos interaction with the solar wind and its influence on flow around Mars, J. Geophys. Res., 86, 6921–6932, 1981.
Brinca, A. L., Cometary linear instabilities: From profusion to prospective, in Cometary Plasma Processes, pp. 211–222, Geophysical Monograph 61, American Geophysical Union, 1991.
Brinca, A. L. and B. T. Tsurutani, On the polarization, compression and nonoscillatory behaviour of hydromagnetic waves associated with pickup ions, Geophys. Res. Lett., 14, 495–498, 1987.
Dubinin, E. M., The Phobos and Deimos effects, Adv. Space Res., 13, (10) 271–290, 1993.
Dubinin, E. M., R. Lundin, N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, H. Koskinen, K. Schwingenschuh, and Ye. G. Yeroshenko, Indirect evidence for a gas/dust torus along the Phobos orbit, Geophys. Res. Lett., 17, 861–864, 1990.
Dubinin, E. M., N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, R. Lundin, R. Pellinen, K. Schwingenschuh, and Ye. G. Yeroshenko, Plasma and magnetic field effects associated with Phobos and Deimos tori, Planet. Space Sci., 39, 113–121, 1991a.
Dubinin, E. M., N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, R. Lundin, H. Koskinen, K. Schwingenschuh, and Ye. G. Yeroshenko, Tails of Phobos and Deimos in the solar wind and in the Martian magnetosphere, Planet. Space Sci., 39, 123–130, 1991b.
Dubinin, E. M., R. Lundin, K. Schwingenschuh, and R. Grard, Some features of the Martian bow shock, Adv. Space Res., 15, (8/9), 423–431, 1995.
Gary, S. P., Theory of Space Plasma Microinstabilities, p. 143, Cambridge University Press, Cambridge, 1993.
Goldstein, M. L., H. K. Wong, and K. H. Glassmeier, Generation of low-frequency waves at comet Halley, J. Geophys. Res., 95, 947–955, 1990.
Horanyi, M., J. A. Burns, M. Tatrallyay, and J. G. Luhmann, Toward understanding the fate of dust lost from the Martian satellites, Geophys. Res. Lett., 17, 853–856, 1990.
Ip, W.-H. and M. Banaskiewicz, On the dust/gas tori of Phobos and Deimos, Geophys. Res. Lett., 17, 857–860, 1990.
Ishimoto, H. and T. Mukai, Phobos dust rings, Planet. Space Sci., 42, 691–697, 1994.
Kholshevnikov, K. V., A. V. Krivov, L. L. Sokolov, and V. B. Titov, The dust torus around Phobos orbit, ICARUS, 105, 351–362, 1993.
Krivov, V. A. and D. P. Hamilton, Martian dust belts: waiting for discovery, ICARUS, 128, 335–353, 1997.
Krymski, A. M., T. K. Breus, M. K. Dougherty, D. J. Southwood, and W. I. Axford, The electromagnetic effects of the solar wind interaction with the Phobos neutral gas halo and dust torus, Planet. Space Sci., 40, 1033–1041, 1992.
Melrose, D. B., Instabilities in Space and Laboratory Plasmas, p. 20, Cambridge University Press, Cambridge, 1986.
Mendis, D. A. and W. I. Axford, Satellites and magnetospheres of outer planets, Ann. Rev. Earth Planet. Sci., 2, 419–474, 1974.
Omidi, N. and D. Winske, A kinetic study of solar wind mass loading and cometary bow shocks, J. Geophys. Res., 92, 13,409–13,426, 1987.
Riedler, W., D. Möhlmann, V. N. Oraevski et al., Magnetic fields near Mars, Nature, 341, 604–607, 1989.
Russell, C. T., J. G. Luhmann, K. Schwingenschuh, W. Riedler, and Ye. G. Yeroshenko, Upstream waves at Mars: Phobos observations, Geophys. Res. Lett., 17, 897–900, 1990.
Sauer, K., K. Baumgärtel, and U. Motschmann, Phobos events as precursors of solar wind-dust interaction, Geophys. Res. Lett., 20, 165–168, 1993.
Sauer, K., E. Dubinin, K. Baumgärtel, and A. Bogdanov, Deimos—an obstacle to the solar wind, Science, 269, 1075–1078, 1995.
Sauer, K., E. Dubinin, K. Baumgärtel, and V. Tarasov, Low-frequency electromagnetic waves and instabilities within the Martian bi-ion plasma, Earth Planets Space, 50, 269–278, 1998.
Soter, S., The dust belts of Mars, Cornell Center for Radiophys. and Space Phys., Rep. No. 462, 1971.
Thorne, R. M. and B. T. Tsurutani, Resonant interactions between cometary ions and low frequency electromagnetic waves, Planet. Space Sci., 35, 1501–1511, 1987.
Tsurutani, B. T., Comets: a laboratory for plasma waves and instabilities, in Cometary Plasma Processes, pp. 189–209, Geophysical Monograph 61, American Geophysical Union, 1991.
Wu, C. S. and R. C. Davidson, Electromagnetic instabilities produced by neutral particle ionization in interplanetary space, J. Geophys. Res., 72, 5399–5406, 1972.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baumgärtel, K., Sauer, K., Dubinin, E. et al. “Phobos events”—Signatures of solar wind interaction with a gas torus?. Earth Planet Sp 50, 453–462 (1998). https://doi.org/10.1186/BF03352133
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03352133