Skip to main content

Volume 50 Supplement 6-7

Special Issue: The Zodiacal Cloud Sciences

Polarimetric properties of aerosol particles

Abstract

Retrieval algorithms for scattering particles are shown based on photopolarimeric measurements of sky light over the ocean and multiple scattering simulations of the polarization field. Polarized components of the atmospheric constituents have been measured by a photopolarimeter (named PSR1000) with spectral bands set up to correspond to the ADEOS/POLDER. The POLDER is the first sensor on board the satellite to be designed to observe polarization.

It is shown that heterogeneous grains are better than homogeneous models to explain polarimetric properties of atmospheric aerosols, and a Maxwell-Garnett mixing rule for small water-soluble (WS) inclusions in an oceanic (OC) matrix is available to interpret the polarization measurements of atmospheric aerosols over the Seto Inland Sea. We also found during our observations that the value of refractive index of the aerosol, i.e., its chemical composition, varies with time and place rather than particle size.

References

  • Bohren, C. F. and N. C. Wickramasinghe, On the computation of optical properties of heterogeneous grains, Astrophys. Space Sci., 50, 461–472, 1977.

    Article  Google Scholar 

  • Burkhard, D. G., Frequency dependent dielectric constant and conductivity for a medium containing impurities, Appl. Opt., 23, 2718–2727, 1984.

    Article  Google Scholar 

  • Chýlek, P. and V. Srivastava, Dielectric constant of a composite inhomogeneous medium, Phys. Rev. B, 27, 5098–5106, 1983.

    Article  Google Scholar 

  • Cox, C. and W. Munk, Measurements of the roughness of the sea surface from photographs of the sun’s glitter, J. Opt. Soc. Amer., 44, 838–850, 1954.

    Article  Google Scholar 

  • Dalu, G., R. Rao, A. Pompei, P. Boi, G. Tonna, and B. Olivieri, Aerosol optical properties retrieved from solar aureole measurements over southern sardinia, J. Geophys. Res., 100, 26135–26140, 1995.

    Article  Google Scholar 

  • Deschamps, P. Y., F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, The polder mission: Instrument characteristics and scientific objectives, IEEE Trans. Geosci. Remote Sensing, 32, 598–615, 1994.

    Article  Google Scholar 

  • Hale, G. M. and M. R. Querry, Optical constants of water in the 200-nm to 200-μm wavelength region, Appl. Opt., 12, 555–563, 1973.

    Article  Google Scholar 

  • Kneizys, F. X., E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough, Users guide to LOWTRAN 7, Tech. Rep. AFGL-TR-88-0177, Air Force Geophysics Laboratory, Hanscom AFB. MA, 1988.

    Google Scholar 

  • Liu, P. S. K., W. R. Leaitch, C. M. Banic, S.-M. Li, D. Ngo, and W. J. Megaw, Aerosol observations at chebogue point during the 1993 north atlantic regional experiment: Relationships among cloud condensation nuclei, size distribution, and chemistry, J. Geophys. Res., 101, 28971–28990, 1996.

    Article  Google Scholar 

  • Masuda, K. and T. Takashima, Dependence of the radiation just above and below the ocean surface on atmospheric and oceanic parameters, Appl. Opt., 27, 4891–4898, 1988.

    Article  Google Scholar 

  • Morel, A., Optical properties of pure water and pure sea water, in Optical Aspects of Oceanography, edited by N. G. Jerlov and E. S. Nielsen, 1 pp., Academic Press, London, 1974.

    Google Scholar 

  • Mukai, S. and S. Ueno, Apparent contrast of an atmosphere-ocean system with an oil polluted sea surface, Appl. Math. Modelling, 2, 254–260, 1978.

    Article  Google Scholar 

  • Mukai, S., I. Sano, K. Masuda, and T. Takashima, Atmospheric correction for ocean color remote sensing: Optical properties of aerosols derived from czcs imagery, IEEE Trans. Geosci. Remote Sensing, 30, 818–824, 1992.

    Article  Google Scholar 

  • Mukai, S., I. Sano, and T. Takashima, Investigation of atmospheric aerosols based on polarization measurements and scattering simulations, Opt. Rev., 3, 487–491, 1996.

    Article  Google Scholar 

  • Pilinis, C., S. Pandis, and J. Seinfeld, Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition, J. Geophys. Res., 100, 18739–18754, 1995.

    Article  Google Scholar 

  • Porter, J. N. and A. D. Clarke, Aerosol size distribution models based on in situ measurements, J. Geophys. Res., 102, 6035–6045, 1997.

    Article  Google Scholar 

  • Sano, I., S. Mukai, M. Yasumoto, K. Masuda, M. Sasaki, and H. Ishida, Interpretation of ground- and space-based measurements of atmospheric aerosols, inProc. IEEEIGARSS’97, pp. 9–11, 1997.

  • Tanaka, M. and T. Nakajima, Effects of oceanic turbidity and index of refraction of hydrosols on the flux of solar radiation in the atmosphere-ocean system, J. Quant. Spectrosc. Radiat. Transfer, 18, 93–111, 1977.

    Article  Google Scholar 

  • Tanré, D., M. Herman, and Y. J. Kaufman, Information on aerosol size distribution contained in solar reflected spectral radiances, J. Geophys. Res., 101, 19043–19060, 1996.

    Article  Google Scholar 

  • World Climate Programme, WCP-112, A preliminary cloudless standard atmosphere for radiation computation, WMO/TD-No. 24, World Meteorological Organization, Geneva, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Sano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sano, I., Mukai, S. Polarimetric properties of aerosol particles. Earth Planet Sp 50, 513–519 (1998). https://doi.org/10.1186/BF03352143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352143

Keywords

  • Aerosol Particle
  • Optical Thickness
  • Atmospheric Aerosol
  • Complex Refractive Index
  • Aerosol Model