Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Thermal radiation from dust grains in Edgeworth-Kuiper Belt

Abstract

We calculate the temperature of dust grains produced in Edgeworth-Kuiper Belt (EKB) based on the grain model for water-ice and silicate mixtures. The dust grains with radii ranging from 0.1 μm to 1 mm have low temperatures of about 20 K to 50 K in EKB, depending on their size, solar distance, and a volume mixing ratio of silicate to water-ice. We also estimate the thermal radiation from dust cloud in EKB. The result of thermal emission shows the spectral feature of water-ice at the wavelength of about 60 μm. Although it is difficult to estimate the possibility to detect the thermal emission spectrum of EKB dust cloud, due to large uncertainties in its spatial density, we found that the thermal emission of dust cloud in EKB lies below the IRAS data of foreground zodiacal emission. The maximum value of the thermal emission derived from the acceptable dust cloud model in EKB, however, becomes to be comparable to that of foreground zodiacal emission in far-infrared and submillimeter wavelength domains. Since the EKB dust cloud seems to concentrate near the ecliptic plane, a scanning of infrared observation along a line perpendicular to the ecliptic plane may reveal the presence of such dust cloud in the future.

References

  1. Backman, D. E., A. Dasgupta, and R. E. Stencel, Model of a Kupier Belt small grain population and resulting far-infrared emission, Astrophys. J., 450, L35–L38, 1995.

    Google Scholar 

  2. Cochran, A. L., H. F. Levison, S. A. Stern, and M. J. Duncan, The discovery of Halley-sized Kuiper Belt objects using the Hubble Space Telescope, Astrophys. J., 455, 342–346, 1995.

    Article  Google Scholar 

  3. Greenberg, J. M., What are comets made of? A model based on interstellar dust, in Comets, edited by L. L. Wilkening, pp. 131–163, The University of Arizona press, 1982.

  4. Grün, E., H. A. Zook, H. Fechtig, and R. H. Giese, Collisional balance of the meteoritic complex, Icarus, 62, 244–272, 1985.

    Article  Google Scholar 

  5. Hauser, M. G., F. C. Gillett, F. J. Low, T. N. Gautier, C. A. Beichman, G. Neugebauer, H. H. Aumann, B. Baud, N. Boggess, J. P. Emerson, J. R. Houck, B. T. Soifer, and R. G. Walker, IRAS observations of the diffuse infrared background, Astrophys. J., 278, L15–L18, 1984.

    Article  Google Scholar 

  6. Huffman, D. R., Optical properties of particulates, in Solid State Astrophysics, edited by N. C. Wickramasighe and D. J. Morgan, pp. 191–200, Reidel, 1976.

  7. Huffman, D. R. and J. L. Stapp, Optical measurements on solids of possible interstellar importance, in Interstellar Dust and Related Topics, edited by J. M. Greenberg and H. C. van de Hulst, IAU Symp., 52, 297–301, 1973.

  8. Jewitt, D. C. and J. X. Luu, The Solar System beyond Neptune, Astron. J., 109, 1867–1876, 1995.

    Article  Google Scholar 

  9. Liou, J.-C., H. A. Zook, and S. F. Dermott, Kuiper Belt dust grains as a source of interplanetary dust particles, Icarus, 124, 429–440, 1996.

    Article  Google Scholar 

  10. McDonnell, J. A. M., W. M. Alexander, W. M. Burton, E. Bussoletti, D. H. Clark, R. J. L. Grard, E. Grün, M. S. Hanner, D. W. Hughes, E. Igenbergs, H. Kuczera, B. A. Lindblad, J.-C. Mandeville, A. Minafra, G. H. Schwehm, Z. Sekanina, M. K. Wallis, J. C. Zarnecki, S. C. Chakaveh, G. C. Evans, S. T. Evans, J. G. Firth, Dust density and mass distribution near comet Halley from Giotto observations, Nature, 321, 338–341, 1986.

    Article  Google Scholar 

  11. Mukai, T., Analysis of a dirty water-ice model for cometary dust, Astron. Astrophys., 164, 397–407, 1986.

    Google Scholar 

  12. Mukai, T., Cometary dust and interplanetary particles, in Evolution of Interstellar Dust and Related Topics, edited by A. Bonetti, J. M. Greenberg, and S. Aiello., pp. 397–445, Elsevier Science Publ., Amsterdam, 1990.

    Google Scholar 

  13. Mukai, T. and C. Koike, Optical constants of olivine particles between wavelengths of 7 and 200 μm, Icarus, 87, 180–187, 1990.

    Article  Google Scholar 

  14. Peterson, A. W., Thermal radiation from interplanetary dust, Astrophys. J., 138, 1218–1230, 1963.

    Article  Google Scholar 

  15. Stern, S. A., Collisional time scale in the Kuiper disk and their implications, Astron. J., 110, 856–868, 1995.

    Article  Google Scholar 

  16. Stern, S. A., Signatures of collisions in the Kuiper disk, Astron. Astrophys., 310, 999–1010, 1996.

    Google Scholar 

  17. Stern, S. A., The Sun’s Kuiper Belt and its surrounding disk, in Cosmic Origins: Galaxies, Stars, Planets, and Life, edited by J. M. Shull, C. A. Woodward, and H. A. Thronson, Astron. Soc. of Pacific publishers, 1998 (in press)

  18. Temi, P., P. de Bernardis, S. Masi, G. Moreno, and A. Salama, A zodiacal dust emission model, in Experiments on Cosmic Dust Analogue, edited by E. Bussoletti, C. Fusco, and G. Longo, et al., pp. 337–344, Kluwer Academic Publishers, 1988.

  19. Warren, S. G., Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 23, 8, 1206–1225, 1984.

    Article  Google Scholar 

  20. Yamamoto, S. and T. Mukai, Dust production by impacts of interstellar dust on Edgeworth-Kuiper Belt objects, Astron. Astrophys., 329, 785–791, 1998.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Yamamoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S., Mukai, T. Thermal radiation from dust grains in Edgeworth-Kuiper Belt. Earth Planet Sp 50, 531–537 (1998). https://doi.org/10.1186/BF03352145

Download citation

Keywords

  • Dust
  • Olivine
  • Thermal Radiation
  • Thermal Emission
  • Dust Cloud