Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Meteoroid orbital element distributions at 1 AU deduced from the Harvard Radio Meteor Project observations


The orbital element distributions of meteoroids detected during the Harvard Radio Meteor Project, 1968–69 Synoptic Year Program, have been reanalysed to remove selection effects associated with the radar observations. Corrections are made for the observing schedule, antenna beampatterns, the radio diffusion ceiling, speed dependence of ionization production, the flux enhancement due to the Earth’s gravity and the probability of encounter with the Earth. These render the eccentricity, aphelion distance, and inclination distributions for meteoroids larger than 10−4 g (radius 200 μm), with orbits that cross the ecliptic near 1 AU.


  1. Bronshten, V. A., Physics of Meteoric Phenomena, 356pp., Reidel, Dordrecht, 1983.

    Google Scholar 

  2. Brown, P. and J. Jones, A determination of the strengths of the sporadic radio-meteor sources, Earth, Moon and Planets, 68, 223–245, 1995.

    Article  Google Scholar 

  3. Elford, W. G., Calculation of the response function of the Harvard Radio Meteor Project Radar System, Harvard Radio Meteor Project NASA Research Report, no. 8, 1964.

  4. Elford, W. G. and G. S. Hawkins, Meteor echo rates and the flux of sporadic meteors, Harvard Radio Meteor Project NASA Research Report, no. 9, 1964.

  5. Elford, W. G. and A. D. Taylor, Measurement of Faraday rotation of radar meteor echoes for the modelling of electron densities in the lower ionosphere, J. Atmos. Solar-Terr. Phys., 59, 1021–1024, 1997.

    Article  Google Scholar 

  6. Grün, E., H. A. Zook, H. Fechtig, and R. H. Giese, Collisional balance of the meteoritic complex, Icarus, 62, 244–272, 1985.

    Article  Google Scholar 

  7. Kessler, D. J., Derivation of the collision probability between orbiting objects: the lifetimes of Jupiter’s outer moons, Icarus, 48, 39–48, 1981.

    Article  Google Scholar 

  8. Lindblad, B. A., The IAU Meteor Data Centre in Lund, in Interplanetary Matter, Proc. 10th European Reg., Meeting of the IAU, Prague, edited by Z. Ceplecha and P. Pecina, 2, 201–204, 1987.

  9. Lindblad, B. A., The IAU Meteor Data Centre in Lund, in Origin and Evolution of Inerplanetary Dust, edited by A. C. Levasseur-Regourd and H. Hasegawa, Kluwer Acad. Publishers, 311–314, 1991.

  10. Love, S. G. and D. E. Brownlee, Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere, Icarus, 89, 26–43, 1991.

    Article  Google Scholar 

  11. Sekanina, Z. and R. B. Southworth, Physical and dynamical studies of meteors. Meteor-fragmentation and stream-distribution studies, NASA Contractor Report CR-2615, 94pp., Smithsonian Institution, Cambridge, Ma, USA, 1975.

    Google Scholar 

  12. Southworth, R. B. and Z. Sekanina, Physical and dynamical studies of meteors, NASA Contractor Report CR-2316, 106pp., Smithsonian Institution, Cambridge, Ma, USA, 1973.

    Google Scholar 

  13. Taylor, A. D., The Harvard Radio Meteor Project meteor velocity distribution reappraised, Icarus, 116, 154–158, 1995.

    Article  Google Scholar 

  14. Taylor, A. D. and N. McBride, A radiant-resolved meteoroid model, Procceedings, 2nd European Space Debris Conference, 1997.

  15. Taylor, A. D., D. I. Steel, and W. G. Elford, Implications for meteroid chemistry from the height distribution of radar meteors, Adv. Space Res., 20, 1501–1504, 1997.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. D. Taylor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taylor, A.D., Elford, W.G. Meteoroid orbital element distributions at 1 AU deduced from the Harvard Radio Meteor Project observations. Earth Planet Sp 50, 569–575 (1998).

Download citation


  • Radar
  • Faraday Rotation
  • Radiant Distribution
  • Radar Echo
  • Radar Detectability