Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Removal of scattered light in the Earth atmosphere

Abstract

Atmospheric correction algorithm, which means a procedure to remove scattered light in an atmosphere from the spaced-based data, are shown for ocean color data given by the satellite ADEOS. In order to achieve better atmospheric correction, this paper proposes two subjects; one is how to determine aerosol characteristics by referring to both of radiance and polarization, and the other is introduction of atmospheric correction coefficients.

At first it is shown that a heterogeneous grain model according to Maxwell-Garnett mixing rule as small water-soluble (WS) inclusions in an oceanic (OC) matrix is available to interpret ADEOS/OCTS and POLDER data observed over the Arabian Sea. Our algorithm is based on an idea that aerosol characteristics can be estimated in terms of scattering behavior in the polarization field. Then atmospheric correction, which is based on radiative transfer process in an atmosphere-ocean model involving the retrieved aerosol model, is applied to ocean color data given by ADEOS/OCTS. Finally our atmospheric correction provides an expected chlorophyll map near the sea surface.

It is of interest to mention that retrieval of atmospheric aerosols is improved by combination use of radiance and polarization, moreover atmospheric correction process is progressed by using the correction coefficients.

References

  1. Bohren, C. F. and N. C. Wickramasinghe, On the computation of optical properties of heterogeneous grains, Astrophys. Space Sci., 50, 461–472, 1977.

    Article  Google Scholar 

  2. Burkhard, D. G., Frequency dependent dielectric constant and conductivity for a medium containing impurities, Appl. Opt., 23, 2718–2727, 1984.

    Article  Google Scholar 

  3. Carmichael, G. R., M.-S. Hong, H. Ueda, L.-L. Chen, K. Murano, J. K. Park, H. Lee, Y. Kim, C. Kang, and S. Shim, Aerosol composition at Cheju Island, Korea, J. Geophys. Res., 102, 6047–6061, 1997.

    Article  Google Scholar 

  4. Chýlek, P. and V. Srivastava, Dielectric constant of a composite inhomogeneous medium, Phys. Rev. B, 27, 5098–5106, 1983.

    Article  Google Scholar 

  5. Cox, C. and W. Munk, Measurements of the roughness of the sea surface from photographs of the sun’s glitter, J. Opt. Soc. Amer., 44, 838–850, 1954.

    Article  Google Scholar 

  6. Dalu, G., R. Rao, A. Pompei, G. P. Boi, Aerosol optical properties retrieved from solar aureole measurements over southern sardinia, J. Geophys. Res., 100, 26135–26140, 1

    Article  Google Scholar 

  7. Deschamps, P. Y., F.-M. Bréon, M. Leroy, A. Podarie, A. Bricaud, J. C. Buriez, and G. Séze, The POLDER mission: Instrument characteristics and scientific objectives, IEEE Trans. Geosci. Remote Sensing, 32, 598–615, 1994.

    Article  Google Scholar 

  8. François, C. and C. Ottlé, Atmospheric correction in the thermal infrared: Global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data, IEEE Trans. Geosci. Remote Sensing, 34, 457–470, 1994.

    Article  Google Scholar 

  9. Fukushima, H. and M. Toratani, Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of its correction, J. Geophys. Res., 102, 119–130, 1997.

    Google Scholar 

  10. Gregg, W. W., F. S. Patt, and R. H. Woodward, Development of a simulated data set for the seaWiFS mission, IEEE Trans. Geosci. Remote Sensing, 35, 421–435, 1997.

    Article  Google Scholar 

  11. Hale, G. M. and M. R. Querry, Optical constants of water in the 200-nm to 200-μm wavelength region, Appl. Opt, 12, 555–563, 1973.

    Article  Google Scholar 

  12. Hansen, J. H. and L. D. Travis, Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610, 1974.

    Article  Google Scholar 

  13. Herman, J. R., P.-K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res., 102, 16911–16922, 1997.

    Article  Google Scholar 

  14. Kneizys, F. X., E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough, Users guide to LOWTRAN 7, Tech. Rep. AFGL-TR-88-0177, Air Force Geophysics Laboratory, Hanscom AFB. MA, 1988.

  15. Liu, P. S. K., W. R. Leaitch, C. M. Banic, S.-M. Li, D. Ngo, and W.J. Megaw, Aerosol observations at Chebogue Point during the 1993 North Atlantic regional Experiment: Relationships among cloud condensation nuclei, size distribution, and chemistry, J. Geophys. Res., 101, 28971–28990, 1996.

    Article  Google Scholar 

  16. Masuda, K. and T. Takashima, Dependence of the radiation just above and below the ocean surface on atmospheric and oceanic parameters, Appl. Opt., 27, 4891–4898, 1988.

    Article  Google Scholar 

  17. Morel, A., Optical properties of pure water and pure sea water, in Optical Aspects of Oceanography, edited by N. G. Jerlov and E. S. Nielsen, 1 pp., Academic Press, London, 1974.

    Google Scholar 

  18. Mukai, S., I. Sano, K. Masuda, and T. Takashima, Atmospheric correction for ocean color remote sensing: Optical properties of aerosols derived from CZCS imagery, IEEE Trans. Geosci. Remote Sensing, 30, 818–824, 1992.

    Article  Google Scholar 

  19. Mukai, S., I. Sano, and T. Takashima, Investigation of atmospheric aerosols based on polarization measurements and scattering simulations, Opt. Rev., 3, 487–491, 1996.

    Article  Google Scholar 

  20. NASDA, ADEOS Reference Hand Book, 338pp., NASDA/EORC, Tokyo, Japan, 1997.

  21. Pilinis, C., S. Pandis, and J. Seinfeld, Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition, J. Geophys. Res., 100, 18739–18754, 1995.

    Article  Google Scholar 

  22. Sano, I., S. Mukai, and T. Takashima, Polarimetric properties of atmospheric aerosols, Proc. SPIE, 3121, 361–369, 1997.

    Article  Google Scholar 

  23. Tanaka, M. and T. Nakajima, Effects of oceanic turbidity and index of refraction of hydrosols on the flux of solar radiation in the atmosphere-ocean system, J. Quant. Spectrosc. Radiat. Transfer, 18, 93–111, 1977.

    Article  Google Scholar 

  24. Van de Hulst, H. C., Light Scattering by Small Particles, 470pp., John Wiley, London, 1957.

    Google Scholar 

  25. World Climate Programme, WCP-112, A preliminary cloudless standard atmosphere for radiation computation, WMO/TD-No. 24, World Meteorological Organization, Geneva, 1986.

    Google Scholar 

  26. Zagolski, F. and J. P. Gastelluetchegorry, Atmospheric correction of AVIRIS images with a procedure based on the inversion of the 5S model, Int. J. Remote Sensing, 16, 3115–3146, 1995.

    Article  Google Scholar 

  27. Zion, P. M., Description of algorithms for processing coastal zone color scanner (CZCS) data, NASA/JPL, Pasadena, CA, JPL Pub. 83–98, pp. 1–29, 1983.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sonoyo Mukai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukai, S., Sano, I. & Toigo, A. Removal of scattered light in the Earth atmosphere. Earth Planet Sp 50, 595–601 (1998). https://doi.org/10.1186/BF03352153

Download citation

Keywords

  • Atmospheric Aerosol
  • Atmospheric Correction
  • Ocean Color
  • Polarization Degree
  • Earth Atmosphere