Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Dust around Herbig Ae/Be stars: modelling of observational data

Abstract

Herbig Ae/Be (HAeBe) stars, young stars surrounded by dust shells, are believed to be precursors of β Pic-like stars, and the dust around them is thought to be a possible source material for the formation of planets. A group of the HAeBe stars (UX Ori, WW Vul, etc.) shows large brightness variations. The dust in the vicinity of these stars is responsible not only for their excess emission in the infrared, anomalous extinction in the ultraviolet and visual, and specific spatial distributions of the intensity and polarization, but also for the “blueing” effect in the colour-magnitude diagrams and the intrinsic polarization increase observed in deep minima.

In contrast to the previous studies, we take advantage of a simultaneous modelling of all the observational data mentioned. Monte-Carlo simulations of polarized radiation transfer in the shells with a spheroidal density distribution have been performed for different dust grain models. The results are compared with observations of a typical HAeBe star WW Vul. Some effects related to a possible porosity of the circumstellar grains are considered.

References

  1. Bohren, C. F. and N. C. Wickramasinghe, On the computation of optical properties of heterogeneous grains, Astrophys. Space Sci., 50, 461–472, 1977.

    Article  Google Scholar 

  2. Burkhard, D. G., Frequency dependent dielectric constant and conductivity for a medium containing impurities, Appl. Opt., 23, 2718–2727, 1984.

    Article  Google Scholar 

  3. Carmichael, G. R., M.-S. Hong, H. Ueda, L.-L. Chen, K. Murano, J. K. Park, H. Lee, Y. Kim, C. Kang, and S. Shim, Aerosol composition at Cheju Island, Korea, J. Geophys. Res., 102, 6047–6061, 1997.

    Article  Google Scholar 

  4. Chýlek, P. and V. Srivastava, Dielectric constant of a composite inhomogeneous medium, Phys. Rev. B, 27, 5098–5106, 1983.

    Article  Google Scholar 

  5. Cox, C. and W. Munk, Measurements of the roughness of the sea surface from photographs of the sun’s glitter, J. Opt. Soc. Amer., 44, 838–850, 1954.

    Article  Google Scholar 

  6. Dalu, G., R. Rao, A. Pompei, G. P. Boi, Tonna, and B. Olivieri, Aerosol optical properties retrieved from solar aureole measurements over southern sardinia, J. Geophys. Res., 100, 26135–26140, 1995.

    Article  Google Scholar 

  7. Deschamps, P. Y., F.-M. Bréon, M. Leroy, A. Podarie, A. Bricaud, J. C. Buriez, and G. Séze, The POLDER mission: Instrument characteristics and scientific objectives, IEEE Trans. Geosci. Remote Sensing, 32, 598–615, 1994.

    Article  Google Scholar 

  8. François, C. and C. Ottlé, Atmospheric correction in the thermal infrared: Global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data, IEEE Trans. Geosci. Remote Sensing, 34, 457–470, 1994.

    Article  Google Scholar 

  9. Fukushima, H. and M. Toratani, Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of its correction, J. Geophys. Res., 102, 119–130, 1997.

    Google Scholar 

  10. Gregg, W. W., F. S. Patt, and R. H. Woodward, Development of a simulated data set for the seaWiFS mission, IEEE Trans. Geosci. Remote Sensing, 35, 421–435, 1997.

    Article  Google Scholar 

  11. Hale, G. M. and M. R. Querry, Optical constants of water in the 200-nm to 200-μm wavelength region, Appl. Opt, 12, 555–563, 1973.

    Article  Google Scholar 

  12. Hansen, J. H. and L. D. Travis, Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610, 1974.

    Article  Google Scholar 

  13. Herman, J. R., P.-K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res., 102, 16911–16922, 1997.

    Article  Google Scholar 

  14. Kneizys, F. X., E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, and S. A. Clough, Users guide to LOWTRAN 7, Tech. Rep. AFGL-TR-88-0177, Air Force Geophysics Laboratory, Hanscom AFB. MA, 1988.

    Google Scholar 

  15. Liu, P. S. K., W. R. Leaitch, C. M. Banic, S.-M. Li, D. Ngo, and W.J. Megaw, Aerosol observations at Chebogue Point during the 1993 North Atlantic regional Experiment: Relationships among cloud condensation nuclei, size distribution, and chemistry, J. Geophys. Res., 101, 28971–28990, 1996.

    Article  Google Scholar 

  16. Masuda, K. and T. Takashima, Dependence of the radiation just above and below the ocean surface on atmospheric and oceanic parameters, Appl. Opt., 27, 4891–4898, 1988.

    Article  Google Scholar 

  17. Morel, A., Optical properties of pure water and pure sea water, in Optical Aspects of Oceanography, edited by N. G. Jerlov and E. S. Nielsen, 1 pp., Academic Press, London, 1974.

    Google Scholar 

  18. Mukai, S., I. Sano, K. Masuda, and T. Takashima, Atmospheric correction for ocean color remote sensing: Optical properties of aerosols derived from CZCS imagery, IEEE Trans. Geosci. Remote Sensing, 30, 818–824, 1992.

    Article  Google Scholar 

  19. Mukai, S., I. Sano, and T. Takashima, Investigation of atmospheric aerosols based on polarization measurements and scattering simulations, Opt. Rev., 3, 487–491, 1996.

    Article  Google Scholar 

  20. NASDA, ADEOS Reference Hand Book, 338pp., NASDA/EORC, Tokyo, Japan, 1997.

    Google Scholar 

  21. Pilinis, C., S. Pandis, and J. Seinfeld, Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition, J. Geophys. Res., 100, 18739–18754, 1995.

    Article  Google Scholar 

  22. Sano, I., S. Mukai, and T. Takashima, Polarimetric properties of atmospheric aerosols, Proc. SPIE, 3121, 361–369, 1997.

    Article  Google Scholar 

  23. Tanaka, M. and T. Nakajima, Effects of oceanic turbidity and index of refraction of hydrosols on the flux of solar radiation in the atmosphere-ocean system, J. Quant. Spectrosc. Radiat. Transfer, 18, 93–111, 1977.

    Article  Google Scholar 

  24. Van de Hulst, H. C., Light Scattering by Small Particles, 470pp., John Wiley, London, 1957.

    Google Scholar 

  25. World Climate Programme, WCP-112, A preliminary cloudless standard atmosphere for radiation computation, WMO/TD-No. 24, World Meteorological Organization, Geneva, 1986.

    Google Scholar 

  26. Zagolski, F. and J. P. Gastelluetchegorry, Atmospheric correction of AVIRIS images with a procedure based on the inversion of the 5S model, Int. J. Remote Sensing, 16, 3115–3146, 1995.

    Article  Google Scholar 

  27. Zion, P. M., Description of algorithms for processing coastal zone color scanner (CZCS) data, NASA/JPL, Pasadena, CA, JPL Pub. 83–98, pp. 1–29, 1983.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natalia A. Krivova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krivova, N.A., Il’in, V.B. & Kimura, H. Dust around Herbig Ae/Be stars: modelling of observational data. Earth Planet Sp 50, 603–606 (1998). https://doi.org/10.1186/BF03352154

Download citation

Keywords

  • Dust
  • Spectral Energy Distribution
  • Young Star
  • Tauri Star
  • Discrete Dipole Approximation