Skip to main content

Magnetic Rossby waves in the stratified ocean of the core, and topographic core-mantle coupling

Abstract

A new model of the stably stratified layer at the top of the core is proposed. The existence of a stably stratified layer (we name it the stratified ocean) at the top of the core makes possible the propagation of the waves akin to the Rossby waves (also named “planetary waves”), well known in oceanology and meteorology. These waves are modified and experience significant decay, due to the core’s magnetic field. The “magnetic Rossby waves” are considered here, using a simple planar model, to reveal their qualitative features without going into significant mathematical complications. The core-mantle coupling, which originates from the interaction of the surface flow with the topography of the core-mantle boundary, is strongly influenced by the stably stratified layer. We consider the topographic core-mantle coupling arising due to generation of motion resembling the magnetic Rossby waves in the stably stratified layer. A simple expression is obtained for the topographic tangential stress on the core-mantle boundary.

References

  • Anufriev, A. P. and S. I. Braginsky, Effect of irregularities of the boundary of the earth’s core on the velocity of the liquid and on the magnetic field, Geomagn. Aeron., 15, 754–757, 1975.

    Google Scholar 

  • Anufriev, A. P. and S. I. Braginsky, Influence of irregularities of the boundary of the earth’s core on fluid velocity and the magnetic field, II, Geomagn. Aeron., 17, 78–82, 1977a.

    Google Scholar 

  • Anufriev, A. P. and S. I. Braginsky, Effect of irregularities of the boundary of the earth’s core on the speed of the fluid and on the magnetic field, III, Geomagn. Aeron., 17, 492–496, 1977b.

    Google Scholar 

  • Bergman, M. I., Magnetic Rossby waves in a stably stratified layer near the surface of the Earth’s outer core, Geophys. Astrophys. Fluid Dyn., 68, 151–176, 1993.

    Article  Google Scholar 

  • Braginsky, S. I., Short-period geomagnetic secular variation, Geophys. Astrophys. Fluid Dyn., 30, 1–78, 1984.

    Article  Google Scholar 

  • Braginsky, S. I., Generation of a 65-year oscillation in the Earth’s core, Izv. Acad. Sci. USSR, Earth Physics, 23, No. 9, 745–748, 1987a.

    Google Scholar 

  • Braginsky, S. I., Waves in a stably stratified layer on the surface of the terrestrial core, Geomagn. Aeron., 27, 410–414, 1987b.

    Google Scholar 

  • Braginsky, S. I., MAC-oscillations of the hidden ocean of the core, J. Geomag. Geoelectr., 45, 1517–1538, 1993.

    Article  Google Scholar 

  • Braginsky, S. I., Dynamics of the stably stratified ocean at the top of the core, Phys. Earth Planet. Inter., 1998 (submitted).

  • Braginsky, S. I. and J. L. Le Mouël, Two-scale model of a geomagnetic field variation, Geophys. J. Int., 112, 147–158, 1993.

    Article  Google Scholar 

  • Brekhovskikh, L. and V. Goncharov, Mechanics of Continua and Wave Dynamics, 342 pp., Spriner-Verlag, Berlin, 1985.

    Book  Google Scholar 

  • Cushman-Roisin, B., Introduction to Geophysical Fluid Dynamics, 320 pp., Prentice Hall, London, 1994.

    Google Scholar 

  • Dziewonski, A. M. and Don L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, 1981.

    Article  Google Scholar 

  • Fearn, D. R. and D. E. Loper, Compositional convection and stratification in Earth’s core, Nature, 289, 393–394, 1981.

    Article  Google Scholar 

  • Frank, S., Ascending droplets in the Earth’s core, Phys. Earth Planet. Inter., 27, 249–254, 1982.

    Article  Google Scholar 

  • Garnero, E. J., D. V. Helmberger, and S. P. Grand, Constraining outermost core velocity with SmKS waves, Geophys. Res. Lett., 20, 2463–2466, 1993.

    Article  Google Scholar 

  • Gill, A. E., Atmosphere-Ocean Dynamics, 662 pp., Academic Press, London, 1982.

    Google Scholar 

  • Gubbins, D., C. J. Thompson, and K. A. Whaler, Stable regions in the Earth’s liquid core, Geophys. J. R. Astron. Soc., 68, 241–251, 1982.

    Article  Google Scholar 

  • Hide, R., Interaction between the earth’s liquid core and solid mantle, Nature, 222, 1055–1056, 1969.

    Article  Google Scholar 

  • Hulot, G., M. Le Huy, and J.-L. Le Mouël, Influence of core flows on the decade variations of the polar motion, Geophys. Astrophys. Fluid Dyn., 82, 35–67, 1996.

    Article  Google Scholar 

  • Kuang, W. and J. Bloxham, On the effect of boundary topography on flow in the Earth’s core, Geophys. Astrophys. Fluid Dyn., 72, 162–195, 1993.

    Article  Google Scholar 

  • Lambeck, K., The Earth’s Variable Rotation, 449 pp., Cambridge Univ. Press, London, 1980.

    Book  Google Scholar 

  • Landau, L. D. and E. M. Lifshitz, Fluid Mechanics, 2nd ed., 539 pp., Pergamon, Oxford, 1987.

    Google Scholar 

  • Lay, T. and C. J. Young, The stably-stratified outermost core revisited, Geophys. Res. Lett., 17, 2001–2004, 1990.

    Article  Google Scholar 

  • Lister, J. R. and B. A. Buffett, How much of the Earth’s core would be stably stratified if Nu < 1?, Proceedings of the 4th SEDI Symposium on Earth’s Deep Interior, Whistler Mountain, British Columbia, Canada, 1994.

    Google Scholar 

  • Loper, D. E. and T. Lay, The core-mantle boundary region, J. Geophys. Res., 111, B4, 6397–6420, 1995.

    Article  Google Scholar 

  • Moffatt, H. K., Topographic coupling at the core-mantle interface, Geophys. Astrophys. Fluid Dyn., 9, 279–288, 1978.

    Article  Google Scholar 

  • Pedlosky, J., Geophysical Fluid Dynamics, 710 pp., Springer-Verlag, Berlin, 1987.

    Book  Google Scholar 

  • Peyronneau, J. and J. P. Poirier, Electrical conductivity of the Earth’s lower mantle, Nature, 342, 537–539, 1989.

    Article  Google Scholar 

  • Roberts, P. H., On topographic core-mantle coupling, Geophys. Astrophys. Fluid Dyn., 44, 181–187, 1988.

    Article  Google Scholar 

  • Shearer, M. J. and P. H. Roberts, The hidden ocean at the top of Earth’s core, Dyn. Atmos. Oceans, 27, 631–647, 1997.

    Article  Google Scholar 

  • Souriau, A. and G. Poupinet, A study of the outermost liquid core using differential travel times of the SKS, SKKS and S3KS phases, Phys. Earth Planet. Inter., 68, 183–199, 1991.

    Article  Google Scholar 

  • Sylvander, M. and A. Souriau, Mapping S-velocity heterogeneous in the D region, from SmKS differential travel times, Phys. Earth Planet. Inter., 94, 1–21, 1996.

    Article  Google Scholar 

  • Whaler, K. A., Does the whole of the Earth’s core convect?, Nature, 287, 528–530, 1980.

    Article  Google Scholar 

  • Yokoyama, Y., Thirty year variation in the Earth rotation and the geomagnetic Gauss coefficients, Geophys. Res. Lett., 20, 2957–2960, 1993.

    Article  Google Scholar 

  • Yukutake, T., A stratified core motion inferred from geomagnetic secular variations, Phys. Earth Planet. Inter., 24, 253–258, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav I. Braginsky.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braginsky, S.I. Magnetic Rossby waves in the stratified ocean of the core, and topographic core-mantle coupling. Earth Planet Sp 50, 641–649 (1998). https://doi.org/10.1186/BF03352159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352159

Keywords

  • Rossby Wave
  • Coriolis Force
  • Density Jump
  • Density Excess
  • Stratify Ocean