Skip to main content
  • Article
  • Published:

Time dependency of fluid flow near the top of the core

Abstract

Fluid flow in the core is assumed to consist of a slowly varying (on time scales > magnetic diffusion time) part and a smaller, rapidly varying part as in the theory of the hydromagnetic dynamo put forward by Braginsky (1965). On the basis of this theory, geomagnetic secular variation models for the last 150 years are used to determine a rapidly varying, axisymmetric, poloidal motion of the fluid near the top of the core as a function of latitude in regions away from the equator. Approximations made in estimating this motion fail near the equator, thus restricting the estimates to latitudes ≥40°. Amplitude of the oscillating part of the axisymmetric poloidal flow is found to be ≤1 km/yr in the northern hemisphere, and nearly 3 km/yr in some parts of the southern hemisphere. The nature of temporal variation of this component differs significantly between the northern and southern hemispheres during the period under consideration.

References

  • Backus, G. E., Kinematics of the geomagnetic secular variation in a perfectly conducting core, Phil. Trans. Roy. Soc. Lond. A, 263, 239–266, 1968.

    Article  Google Scholar 

  • Backus, G. E. and J. L. Le Mouël, The region on the core-mantle boundary where a geostrophic velocity field can be determined from frozen flux magnetic data, Geophys. J. R. Astron. Soc., 85, 617–628, 1986.

    Article  Google Scholar 

  • Benton, E. R. and M. A. Celaya, The simplest, unsteady surface flow of a frozen-flux core that exactly fits a geomagnetic field model, Geophys. Res. Lett., 18, 577–580, 1991.

    Article  Google Scholar 

  • Bhattacharyya, A., An estimate of the radial gradient of the toroidal magnetic field at the top of the Earth’s core, Phys. Earth Planet. Inter., 90, 81–90, 1995.

    Article  Google Scholar 

  • Bloxham, J., On the consequences of strong stable stratification at the top of Earth’s outer core, Geophys. Res. Lett., 17, 2081–2084, 1990.

    Article  Google Scholar 

  • Bloxham, J. and A. Jackson, Simultaneous stochastic inversion for geomagnetic main field and secular variation, 2. 1820–1980, J. Geophys. Res., 94, 15,753–15,769, 1989.

    Article  Google Scholar 

  • Bloxham, J. and A. Jackson, Fluid flow near the surface of Earth’s outer core, Rev. Geophys., 29, 97–120, 1991.

    Article  Google Scholar 

  • Bloxham, J. and A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary, J. Geophys. Res., 97, 19,537–19,563, 1992.

    Article  Google Scholar 

  • Braginsky, S. I., Theory of the hydromagnetic dynamo, Sov. Phys. JETP, 20, 1462–1471, 1965.

    Google Scholar 

  • Glatzmaier, G. A. and P. H. Roberts, Intermediate dynamo models, J. Geomag. Geoelectr., 45, 1605–1616, 1993.

    Article  Google Scholar 

  • Gubbins, D., Finding core motions from magnetic observations, Phil. Trans. Roy. Soc. Lond. A, 306, 249–256, 1982.

    Article  Google Scholar 

  • Honkura, Y. and M. Matsushima, Time-dependent pattern of core motion inferred from fluctuations of standing and drifting non-dipole fields, J. Geomag. Geoelectr., 40, 1511–1522, 1988.

    Article  Google Scholar 

  • Honkura, Y. and T. Rikitake, Core motion as inferred from drifting and standing non-dipole fields, J. Geomag. Geoelectr., 24, 223–230, 1972.

    Article  Google Scholar 

  • Hulot, G., M. Le Huy, and J. L. Le Mouël, Secousses (jerks) de la variation sulaire et mouvements dans le noyau terrestre, C. R. Acad. Sci. Paris, 317, 333–341, 1993.

    Google Scholar 

  • Jackson, A., Time-dependency of tangentially-geostrophic core surface motions, Phys. Earth Planet. Inter., 103, 293, 1997.

    Article  Google Scholar 

  • Jackson, A., J. Bloxham, and D. Gubbins, Time-dependent flow at the core surface and conservation of angular momentum in the coupled coremantle system, in Dynamics of Earth’s Deep Interior and Earth Rotation, edited by J. L. Le Mouël, D. E. Smylie, and T. Herring, pp. 97–107, AGU Geophysical Monograph 72, IUGG Volume 12, 1993.

  • Jault, D., C. Gire, and J. L. Le Mouël, Westward drift, core motions and exchanges of angular momentum between core and mantle, Nature, 333, 353–356, 1988.

    Article  Google Scholar 

  • Kelly, P. and D. Gubbins, The geomagnetic field over the past 5 million years, Geophys. J. Int., 128, 315–330, 1997.

    Article  Google Scholar 

  • Langel, R. A., The main field, in Geomagnetism, 1, edited by J. A. Jacobs, pp. 249–512, Academic, London, 1987.

    Google Scholar 

  • Lloyd, D. and D. Gubbins, Toroidal fluid motion at the top of Earth’s core, Geophys. J. Int., 100, 455–467, 1990.

    Article  Google Scholar 

  • Matsushima, M., Fluid motion in the Earth’s core derived from the geomagnetic field and its implication for the geodynamo, J. Geomag. Geoelectr., 45, 1481–1495, 1993.

    Article  Google Scholar 

  • Matsushima, M. and Y. Honkura, Fluctuation of the standing and drifting parts of the Earth’s magnetic field, Geophys. J., 94, 35–50, 1988.

    Google Scholar 

  • Matsushima, M. and Y. Honkura, Large scale fluid motion in the Earth’s outer core estimated from non-dipole magnetic field data, J. Geomag. Geoelectr., 41, 963–1000, 1989.

    Article  Google Scholar 

  • Matsushima, M. and Y. Honkura, Reexamination of fluid motion in the Earth’s core derived from geomagnetic field data-Is the -effect really strong in the core?, J. Geomag. Geoelectr., 44, 521–553, 1992.

    Article  Google Scholar 

  • Rikitake, T., Non-dipole field and fluid motion in the Earth’s core, J. Geomag. Geoelectr., 19, 129–142, 1967.

    Article  Google Scholar 

  • Roberts, P. H. and S. Scott, On the analysis of the secular variation, 1, A hydromagnetic constraint: Theory, J. Geomag. Geoelectr., 17, 137–151, 1965.

    Article  Google Scholar 

  • Voorhies, C. V., Geomagnetic estimates of steady surficial core flow and flux diffusion: Unexpected geodynamo experiments, in Dynamics of Earth ’s Deep Interior and Earth Rotation, edited by J. L. Le Mouël, D. E. Smylie, and T. Herring, pp. 113–125, AGU Geophysical Monograph 72, IUGG Volume 12, 1993.

  • Voorhies, C. V. and G. E. Backus, Steady flows at the top of the core from geomagnetic field models: The steady motions theorem, Geophys. Astrophys. Fluid Dyn., 32, 163–173, 1985.

    Article  Google Scholar 

  • Whaler, K. A., Does the whole of the Earth’s core convect?, Nature, 287, 528–530, 1980.

    Article  Google Scholar 

  • Yukutake, T. and H. Tachinaka, Separation of the earth’s magnetic field into the drifting and the standing parts, Bull. Earthq. Res. Inst., Univ. Tokyo, 47, 65–97, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, A. Time dependency of fluid flow near the top of the core. Earth Planet Sp 50, 813–825 (1998). https://doi.org/10.1186/BF03352174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352174

Keywords