Skip to main content

Advertisement

On a possibility of parametric amplifier in the stratosphere-mesosphere suggested by active MASSA experiments with the AUREOL-3 satellite

Article metrics

  • 265 Accesses

  • 6 Citations

Abstract

A short review is given of the contemporary concepts and controversies concerning the electromagnetic effects observed in space which are considered to be the results of energy transport from surface and/or lower atmosphere. A concept of a parametric amplifier in the stratosphere-mesosphere was recently suggested by the authors (1996) from the reanalysis of the experimental results from the AUREOL-3 satellite during active experiments MASSA with ground chemical explosions. Electric discharges in the stratosphere-mesosphere medium were suggested as a mechanism for this parametric amplifier. Such discharges, or localized electric current bursts in the Alfven wave frequency scale (0.1–1 s−1), could also play a role as a mechanism of effective energy transport from the surface to space layers. Among the possible EQ precursor effects, some can be related to local atmospheric electricity variations such as emanations of gas and/or aerosols, conductivity changes in the lower atmosphere, or non-linear combinations of acoustic waves with a meteor ionization channel. Thus a multidisciplinary search of EQ precursors, especially with regard to atmospheric electricity variations, lightning-type, or slower discharges related to meteor ionization, seems to be among the ways to deepen the understanding of the complicated relations between different layers of atmosphere and magnetosphere.

References

  1. Burke, W. J., T. L. Aggson, N. C. Maynard, W. R. Hoegy, R. A. Hoffman, R. M. Candy, C. Liebrecht, and E. Rodgers, Effects of a lightning discharge detected by the DE 2 satellite over hurricane Debbie, J. Geophys. Res., 97, 6359–6367, 1992.

  2. Danilov, A. V. and V. A. Dovzhenko, On excitation of electromagnetic fields during acoustic impulse entry in the ionosphere, Geomagn. Aeron., 27, 772–777, 1987 (in Russian).

  3. Devyaterikov, I. A., E. A. Ivanov, S. I. Kozlov, and V. P. Kudryavtsev, Effects of acoustic waves on the behavior of charged particles in the low ionosphere, Cosmic Res., 22, 197–200, 1984 (English translation).

  4. Dowden, P. E., Comment on “VLF signatures of ionospheric disturbances associated with sprites” by Inan et al., Geophys. Res. Lett., 23, 3421–3422, 1996.

  5. Dowden, R. L., J. B. Brundell, W. A. Lyons, and T. Nelson, Detection and location of red sprites by VLF scattering of subionospheric transmissions, Geophys. Res. Lett., 23, 1737–1740, 1996.

  6. Farrell, W. M., T. L. Aggson, E. B. Rodgers, and W. B. Hanson, Observation of ionospheric electric fields above atmospheric weather systems, J. Geophys. Res., 99, A10, 19475–19483, 1994.

  7. Fatkullin, M. N., T. I. Zelenova, and A. D. Legenka, On the ionospheric effects of asthenospheric earthquake, Phys. Earth Planet. Inter., 57, 82–85, 1989.

  8. Finkelstein, D. and J. R. Powell, Earthquake lightning, Nature, 228, 992, 1970.

  9. Finkelstein, D., R. D. Hill, and J. R. Powell, The piezoelectric theory of earthquake lightning, J. Geophys. Res., 78, 993, 1973.

  10. Fishkova, L. M., M. B. Gokhberg, and V. A. Pilipenko, Relationship between night airglow and seismic activity, Ann. Geophys., 3, 689–694, 1985.

  11. Fraser-Smith, A. C., A. Bernardi, P. R. McGill, M. E. Ladd, R. A. Helliwell, and O. G. Villard, Jr., Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake, Geophys. Res. Lett., 17, 1465–1468, 1990.

  12. Fraser-Smith, A. C., P. R. McGill, R. A. Helliwell, and O. G. Villard, Jr., Ultra-low frequency magnetic field measurements in southern California during the Northridge earthquake on 17 January, 1994, Geophys. Res. Lett., 21, 2195–2198, 1994.

  13. Fujinawa, Y. K., K. Takahashi, T. Matsumoto, and N. Kawakami, Experiments to locate sources of earthquakerelated VLF electromagnetic signals, Proc. Japan Acad., 73 B, No. 3, 33–38, 1997.

  14. Galper, A. M., V. V. Dmitrenko, N. V. Nikitina, et al., Relation of highenergy charged particles in the radiation belt with the Earth’s seismicity, Cosmic Res., 27, 789–792, 1989 (in Russian).

  15. Galperin, Yu. I. and M. Hayakawa, On the magnetospheric effects of experimental ground explosions observed from AUREOL-3, J. Geomag. Geoelectr., 48, 1241–1263, 1996.

  16. Galperin, Yu. I., V. A. Gladyshev, N. V. Jorjio, R. A. Kovrazhkin, Yu. V. Lissakov, V. D. Maslov, L. M. Nikolaenko, R. Z. Sagdeev, O. A. Molchanov, M. M. Mogilevsky, L. S. Alperovich, M. B. Gokhberg, E. A. Ivanov, O. A. Pokhotelov, H. Reme, J.-M. Bosqued, C. Beghin, and J. J. Berthelier, VLF and ELF effects in the upper ionosphere caused by large scale acoustic waves in the lower ionosphere observed from AUREOL-3 satellite, in Results of the ARCAD 3 PROJECT and of the Recent Programmes in the Magnetospheric and Ionospheric Physics, edited by CNES, CEPADUES-EDITIONS., Toulouse, pp. 661–684, 1985a.

  17. Galperin, Yu. I., V. A. Gladyshev, N. V. Jorjio, R. A. Kovrazhkin, Yu. V. Lissakov, V. D. Maslov, L. M. Nikolaenko, R. Z. Sagdeev, O. A. Molchanov, M. M. Mogilevsky, L. S. Alperovich, M. B. Gokhberg, E. A. Ivanov, O. A. Pokhotelov, C. Beghin, J. J. Berthelier, J.-M. Bosqued, and H. Reme, Alfven wave excited in the middlelatitude magnetosphere by a large-scale acoustic wave propagating in lower ionosphere, Izv. AN SSSR, Phys. Earth, No. 11, 88–98, 1985b.

  18. Galperin, Yu. I., V. A. Gladyshev, N. V. Jorjio, V. I. Larkina, and M. M. Mogilevsky, Energetic particle precipitation from the magnetosphere above the epicenter of approaching earthquake, Cosmic Res., 30, 89–106, 1992 (in Russian).

  19. Geller, R. J., D. D. Jackson, Ya. Y. Kagan, and F. Mulargia, Earthquakes cannot be predicted, Science, 275, 1616–1617, 1997.

  20. Ginzburg, E. A., A. B. Malyshev, I. P. Proshkina, and V. P. Pustovetov, Correlation of strong earthquakes with variations of particle flux of the radiation belt, Geomagn. Aeron., 34, 60–67, 1994 (in Russian).

  21. Gokhberg, M. B., Strong acoustic wave action, in Active Experiments in Space, ESA Symp. at Alpbach, 24–28, May 1983, edited by ESA, ESA-SP195, Noordwijk, pp. 99–110, 1983.

  22. Gokhberg, M. B., V. A. Morgunov, T. Yoshino, and T. Tomizawa, Experimental measurements of electromagnetic emissions possibly related to earthquakes in Japan, J. Geophys. Res., 87, No. 9, 7824–7828, 1982.

  23. Gokhberg, M. B., V. A. Pilipenko, and O. A. Pokhotelov, Observations from a satellite of electromagnetic radiation above the region of an earthquake in preparation, Doklady AN SSSR (Reports to the USSR Acad. Sci.), 268, 56–58, 1983.

  24. Gokhberg, M. B., I. L. Gufeld, A. A. Rozhnoy, V. F. Marenko, V. S. Yampolsky, and E. A. Ponomarev, Study of seismic influence on the iono-sphere by super long-wave probing of the Earthionosphere waveguide, Phys. Earth Planet. Inter., 57, 64–74, 1989.

  25. Gorny, V. I., A. G. Salman, A. A. Tronin, and B. V. Shilin, Outgoing infrared Earth’s radiationan indicator of seismic activity, Doklady An SSSR (Reports to the USSR Acad. Sci.), 301, No. 1, 67–69, 1988.

  26. Greifinger, C. and P. Greifinger, Transient ULF electric and magnetic fields following a lightning discharge, J. Geophys. Res., 81, 2237–2247, 1976.

  27. Gufeld, I. L., G. A. Gusev, R. A. Lyutikov, and M. I. Matveeva, Seismic process as phase instability of the lithosphere, in Atmospheric and Ionospheric Phenomena Associated with Earthquakes, edited by M. Hayakawa, Terra Sci. Pub. Corp., Tokyo, 1998 (in press).

  28. Hayakawa, M., Electromagnetic precursors of earthquakes: Review of recent activities, in Rev. Radio Sci. (1993-1995), edited by W. Ross Stone, pp. 807–818, Oxford Univ. Press, 1997.

  29. Hayakawa, M., I. Tomizawa, K. Ohta, S. Shimakura, Y. K. Fujinawa, K. Takahashi, and T. Yoshino, Direction finding of precursory radio emissions associated with earthquakes: a proposal, Phys. Earth Planet. Inter., 77, 127–135, 1993.

  30. Hayakawa, M., R. Kawate, O. A. Molchanov, and K. Yumoto, Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993, Geophys. Res. Lett., 23, 241–244, 1996.

  31. Henderson, T. R., V. S. Sonwalkar, R. A. Helliwell, U. S. Inan, and A. C. Fraser-Smith, A search for ELF/VLF emissions induced by earthquakes as observed in the ionosphere by the DE-2 satellite, J. Geophys. Res., 98, 9503–9509, 1993.

  32. Inan, U. S., T. F. Bell, and V. P. Pasko, Reply, Geophys. Res. Lett., 23, 3423–3424, 1996.

  33. Johnston, M. J. S., Review of electrical and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys., 18, 441–475, 1997.

  34. King, C. Ju., Gas chemistry applied to earthquake prediction: An overview, J. Geophys. Res., 91, 12269–12290, 1986.

  35. Larkina, V. I., A. V. Nalivayko, N. I. Gershenzon, M. B. Gokhberg, V. A. Liperovsky, and S. L. Shalimov, Observations of VLF emission related with seismic activity on the Interkosmos-19 satellite, Geomagn. Aeron., 23, 684–687, 1983 (English translation).

  36. Larkina, V. I., V. V. Migulin, O. A. Molchanov, I. P. Kharkov, A. S. Inchin, and V. B. Schvetcova, Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones, Phys. Earth Planet. Inter., 57, 100–109, 1989.

  37. Martysh, E. and V. Sidorenko, Upward discharge above seismo-active regions, paper presented at the International Workshop on Seismo-Electromagnetics, Tokyo, March, 1997.

  38. Merzer, M., Closefit modelling of high ULF magnetic fields preceding Loma Prieta earthquake, 1992 Regional Symposium on Electromagnetic Compatibility, Tel-Aviv, Israel, November, 1992, Program and Papers, 2-1-2, pp. 1–4, 1992.

  39. Molchanov, O. A., Wave and plasma phenomena inside the ionosphere and magnetosphere associated with earthquakes, Rev. Radio Sci., Chap. 28, 591–600, 1993.

  40. Molchanov, O. A., Y. A. Kopytenko, P. V. Voronov, E. A. Kopytenko, T. Matiashvili, A. C. Fraser-Smith, and A. Bernardi, Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms = 6.9) and Loma-Prieta (Ms = 7.1) earthquakes: Comparative analysis, Geophys. Res. Lett., 19, 1495–1498, 1992.

  41. Molchanov, O. A., O. A. Mazhaeva, A. N. Goliavin, and M. Hayakawa, Observation by the Intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquakes, Ann. Geophys., 11, 431–440, 1993.

  42. Molchanov, O. A., M. Hayakawa, and V. A. Rafalsky, Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere, J. Geophys. Res., 100, A2, 1691–1712, 1995.

  43. Molchanov, O. A., M. Hayakawa, T. Ondoh, and E. Kawai, Precursory effects in the subionospheric VLF signals for the Kobe earthquake, Phys. Earth Planet. Inter., 105, 239–248, 1998.

  44. Parrot, M., Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events, J. Geophys. Res., 99, 23339–23345, 1994.

  45. Pierce, E. T., Atmospheric electricity and earthquake prediction, Geophys. Res. Lett., 3, 185–188, 1976.

  46. Pokhotelov, O. A., V. A. Pilipenko, E. N. Fedorov, L. Stenflo, and P. K. Shukla, Induced electromagnetic turbulence in the ionosphere and the magnetosphere, Phys. Scr., 50, 600–605, 1994.

  47. Pulinets, S. A., Conjugate seismo-ionospheric variations before strong earthquakes, in Atmospheric and Ionospheric Phenomena Associated with Earthquakes, edited by M. Hayakawa, Terra Sci. Pub. Corp., Tokyo, 1998 (in press).

  48. Qiang Zuji, Thermal infrared anomaly-precursor of impending earthquakes, Chin. Sci. Bull., 36, No. 4, 319–324, 1991.

  49. Rikitake, T., Earthquake prediction: an empirical approach, Tectono-physics, 148, 195–288, 1988.

  50. Roger, C. J., N. R. Thomson, and R. L. Dowden, A search for ELF/VLF activity associated with earthquakes using ISIS satellite data, J. Geophys. Res., 101, A6, 13369–13378, 1996.

  51. Roussel-Dupre, R. A., A. V. Gurevich, T. Tunnell, and G. M. Milikh, Kinetic theory of runaway air breakdown, Phys. Rev., 49, No. 3, 2257–2271, 1994.

  52. Rowland, H. L., R. F. Fernsler, J. D. Huba, and P. A. Bernhardt, Lightning driven EMP in upper atmosphere, Geophys. Res. Lett., 22, 361–364, 1995.

  53. Sentman, D. D. and E. M. Wescott, Observations of upper atmospheric optical flashes recorded from an aircraft, Geophys. Res. Lett., 20, 2857–2860, 1993.

  54. Sukhorukov, A. I., E. A. Rudenchik, and P. Stubbe, Simulation of the strong lightning pulse penetration into the lower ionosphere, Geophys. Res. Lett., 23, 2911–2914, 1996.

  55. Surkov, V. V., Excitation of low-frequency geomagnetic oscillation upon the propagation of a vertical acoustic wave in the E-layer of the ionosphere, Geomagn. Aeron., 32, 332–336, 1992 (English translation).

  56. Winckler, J. R., Further observations of cloudionosphere electrical discharges above thunderstorms, J. Geophys. Res., 100, D7, 14335–14345, 1995.

Download references

Author information

Correspondence to Yu. Galperin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galperin, Y., Hayakawa, M. On a possibility of parametric amplifier in the stratosphere-mesosphere suggested by active MASSA experiments with the AUREOL-3 satellite. Earth Planet Sp 50, 827–832 (1998) doi:10.1186/BF03352175

Download citation

Keywords

  • Energy Transport
  • Lightning Discharge
  • Lower Ionosphere
  • Alfven Wave
  • Atmospheric Electricity