Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Prediction of recurrent geomagnetic disturbances by using adaptive filtering


Recurrent geomagnetic disturbances are an important part of geomagnetic activities, which are associated with the neutral sheet structure in the heliosphere and the activities of long lived solar coronal holes. Another significant character is the periodic activities recorded by geomagnetic indices. In this paper an algorithm—Adaptive Filtering (AF), is introduced to forecast recurrent geomagnetic events based on the geomagnetic K index. Adaptive filtering can deal with nonstationary data and can adapt to changes in the data pattern. Therefore it is a very helpful method for forecasting the geomagnetic disturbances and the disturbances in the interplanetary space. By using AF technique a prediction for whole Bartels rotation can be obtained when output length is taken as 27-point. For recurrent periods the prediction efficiency is about 30%, the correlation coefficient is 0.55. For nonrecurrent periods the prediction efficiency and correlation coefficient decrease obviously, but the standard variance does not change very much.


  1. Akasofu, S.-I. and C. Fry, A first generation numerical geomagnetic storm prediction scheme, Planet. Space Sci., 34(1), 77–92, 1986.

  2. Bame, S. J., J. R. Asbridge, W. C. Feldman, and J. T. Gosling, Solar cycle evolution of high-speed solar wind streams, Astrophys. J., 207(3), 977–980, 1976.

  3. Bartels, J., Terrestrial magnetic activity and its relations to solar phenomena, J. Geophys. Res., 37(1), 1–52, 1932.

  4. Bartels, J., Twenty-seven day recurrencies in terrestrial-magnetic and solar activity, 1923–1933, J. Geophys. Res., 39(1), 201–202, 1934.

  5. Box, G. E. P. and G. M. Jenkins, Time-Series Analysis: Forecasting and Control, Holden-Day, San Francisco, 1976.

  6. Burlaga, L. F. and R. P. Lepping, The causes of recurrent geomagnetic storms, Planet. Space Sci., 25(12), 1151–1160, 1977.

  7. Chao, J. K. and R. P. Lepping, A correlative study of SSC’s, Interplanetary shocks, and Solar activity, J. Geophys. Res., 79(3), 1799–1807, 1974.

  8. Clauer, R., R. L. McPherron, and C. Searls, Solar wind control of the low latitude asymmetric magnetic disturbance field, J. Geophys. Res., 88(A4), 2123–2130, 1983.

  9. Crooker, N. U. and E. W. Cliver, Postmodern view of M-regions, J. Geophys. Res., 99(A12), 23383–23390, 1994.

  10. Eselevich, V. G., Solar flares: Geoeffectiveness and the possibility of a new classification, Planet. Space Sci., 38(2), 189–206, 1990.

  11. Fenimore, E. E., J. R. Asbridge, S. J. Bame, W. C. Feldman, and J. T. Gosling, The power spectrum of the solar wind speed for periods greater than 10 days, J. Geophys. Res., 83(A9), 4353–4357, 1978.

  12. Freeman, J., A. Nagai, P. Reiff, W. Denig, S. Gussenhoven-Shea, M. Heinemann, F. Rich, and M. Hairston, The use of neural networks to predict magnetospheric parameters for input to a magnetospheric forecast model, in Proceedings of Artificial Intelligence Applications in Solar-Terrestrial Physics Workshop in Lund Sweden, September 22–24, 1993, edited by J. A. Joselyn, H. Lundstedt, and J. Trollinger, pp. 167–174, 1993.

  13. Gosling, J. T., E. Hildner, R. M. MacQueen, R. H. Munro, A. I. Poland, and C. L. Ross, Direct observations of a flare related coronal and solar wind disturbance, Solar Phys., 40(2), 439–448, 1975.

  14. Gosling, J. T., S. J. Bame, D. J. McComas, and J. L. Phillips, Coronal mass ejections (CME) and large geomagnetic storms, Geophys. Res. Lett., 17(7), 901–904, 1990.

  15. Hansen, R. T., S. F. Hansen, and C. Sawyer, Long-lived coronal structure and recurrent geomagnetic patterns in 1974, Planet. Space Sci., 24(4), 381–388, 1976.

  16. Iyemori, T., H. Maeda, and T. Kamei, Impulse response of geomagnetic indices to interplanetary magnetic field, J. Geomag. Geoelectr., 31(1), 1–9, 1979.

  17. Jacobsen, B., P. E. Sandholt, B. Lybekk, and A. Egeland, Transient auroral events near midday: Relationship with solar wind/magnetosheath, J. Geophys. Res., 96(A2), 1327–1336, 1991.

  18. Joselyn, J. A., Real-time prediction of global geomagnetic activity, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, pp. 127–138, Terra, Tokyo, Japan, 1986.

  19. Lundstedt, H., An inductive expert system for solar-terrestrial predictions, in Proceeding of Solar-Terrestrial Prediction Workshop, pp. 126–129, Leura, Australia, 1989.

  20. Lundstedt, H., Neural network and prediction of solar-terrestrial effects, Planet. Space Sci., 40 (4), 457–464, 1992.

  21. Makridakis, S. and S. C. Wheelwright, Adaptive filtering: an integrated autoregressive/moving average filter for series forecasting, Oper. Res. Quarterly, 28(2,ii), 425–437, 1977.

  22. Marubashi, K., The space weather forecast program, Space Sci. Rev., 51(1/2), 197–214, 1989.

  23. McPherron, R. L., R. A. Fay, C. R. Garrity, L. F. Bargatze, D. N. Baker, C. R. Clauer, and C. Searls, Coupling of the solar wind to measures of magnetic activity, in Proc. Conf. Achievement of the IMS, Graz. Austria, ESA SP-217, pp. 161–170, 1984.

  24. Mursula, K. and B. Zieger, The 13.5-day periodicity in the Sun, solar wind, and geomagnetic activity: The last three solar cycles, J. Geophys. Res., 101(A12), 27077–27090, 1996.

  25. Neupert, W. M. and V. Pizzo, Solar coronal holes as sources of recurrent geomagnetic disturbances, J. Geophys. Res., 79(25), 3701–3709, 1974.

  26. Sargent, H. H., III, The 27-day recurrence index, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, pp. 143–154, Terra, Tokyo, Japan, 1986.

  27. Schwenn, R., Relationship of coronal transients to interplanetary shocks: 3D aspects, Space Sci. Rev., 44(1/2), 139–168, 1986.

  28. Sheeley, N. R., Jr., J. W. Harvey, and W. C. Feldman, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances 1973–1976, Sol. Phys., 49(2), 271–278, 1976.

  29. Smith, E. J., J. A. Slavin, R. D. Zwickl, and S. J. Bame, Shocks and storm sudden commencements, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, pp. 345–357, Terra, Tokyo, Japan, 1986.

  30. Tang, F., B. T. Tsurutani, W. D. Gonzalez, S.-I. Akasofu, and E. J. Smith, Solar sources of interplanetary southward Bz events responsible for major magnetic storms (1978-1979), J. Geophys. Res., 94(A4), 3535–3541, 1989.

  31. Tsurutani, B. T., B. E. Glodstein, E. J. Smith, W. D. Gonzalez, F. Tang, S.-I. Akasofu, and R. R. Anderson, The interplanetary and solar causes of geomagnetic activity, Planet. Space Sci., 38(1), 109–126, 1990.

  32. Wilson, R. M., Geomagnetic response to magnetic clouds, Planet. Space Sci., 35(3), 329–335, 1987.

  33. Wilson, R. M. and E. Hildner, On the association of magnetic clouds with disappearing filaments, J. Geophys. Res., 91(A5), 5867–5872, 1986.

  34. Wu, J.-G. and H. Lundstedt, Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks, Geophys. Res. Lett., 23(4), 319–322, 1996.

Download references

Author information



Corresponding author

Correspondence to X. -Y. Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X.-., Wei, F.-. Prediction of recurrent geomagnetic disturbances by using adaptive filtering. Earth Planet Sp 50, 839–845 (1998).

Download citation


  • Solar Wind
  • Geomagnetic Storm
  • Geomagnetic Activity
  • Magnetic Cloud
  • Adaptive Filter