Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

A case study of whistlers recorded at Varanasi (L = 1.07)


Large number of high dispersion whistlers recorded at low latitude station Varanasi (L = 1.07) are analysed and it is find out that they have propagated along L 2.12–2.76. This is explained by considering the propagation of whistlers through the earth-ionosphere wave guide after exiting from the duct towards the equator. Using diffusive equilibrium model (DE-1), we have estimated equatorial electron density, total electron content in a flux tube and large scale convective electric fields which are in good agreement with the results reported by other workers from the analysis of mid latitude whistlers. The significance of this paper is to probe mid latitude plasmasphere using whistlers recorded at low latitudes. Further, an attempt has been made to study the propagation mechanism of low latitude whistlers.


  1. Andrews, M. K., F. B. Knox, and N. R. Thomson, Magnetospheric electric fields and protonospheric coupling fluxes inferred from simultaneous phase and group path measurement on whistler-mode signals, Planet. Space Sci., 26, 171–183, 1978.

  2. Bernard, L. C., A new nose extension method for whistlers, J. Atmos. Terr. Phys., 35, 871–880, 1973.

  3. Block, L. P. and D. L. Carpenter, Derivation of magnetospheric electric fields from whistler data in a dynamic geomagnetic field, J. Geophys. Res., 79, 2783–2789, 1974.

  4. Carpenter, D. L., New whistler evidence of a dynamo origin of electric fields in the quiet plasmasphere, J. Geophys. Res., 83, 1558–1564, 1978.

  5. Carpenter, D. L., K. Stone, J. C. Siren, and T. L. Crystal, Magnetospheric electric field deduced from drifting whistler paths, J. Geophys. Res., 77, 2819–2836, 1972.

  6. Dowden, R. L. and G. M. Allcock, Determination of nose frequency of non-nose whistlers, J. Atmos. Terr. Phys., 33, 1125–1129, 1971.

  7. Hamar, D., G. Tarcsai, J. Lichtenberger, A. J. Smith, and K. H. Yearby, Fine structure of whistler recorded digitally at Halley, Antarctica, J. Atmos. Terr. Phys., 52, 801–810, 1990.

  8. Khosa, P. N., M. M. Ahmad, and Lalmani, Whistler observation of magnetospheric electric field in the night side plasmasphere at low latitudes, The Moon and Planet, 27, 453–462, 1982.

  9. Lalmani, A. Ahmad, and M. M. Ahmad, Ionosphere plasmasphere coupling electron fluxes from low latitude whistler studies at Nainital during geomagnetic storm, Planet. Space Sci., 40, 1409–1418, 1992.

  10. Lalmani, A. Ahmad, and R. Singh, An estimate of quiet time plasmaspheric electric fields from whistler observations at low latitude, J. Geomag. Geoelectr., 48, 211–220, 1996.

  11. Mishra, K. D., Lalmani, and B. D. Singh, Magnetospheric electric field from low latitude whistlers during magnetic storm, Planet. Space Sci., 28, 449–452, 1980.

  12. Park, C. G., Methods of determining electron concentration in the magneto-sphere from nose whistlers, Tech. Report No. 3454-1, Radioscience Lab., Stanford University, Stanford, 1972.

  13. Park, C. G., Substorm electric fields in the evening plasmasphere and their effects on the underlying F-layer, J. Geophys. Res., 81, 2283–2288, 1976.

  14. Park, C. G., Whistler observations of substorm electric fields in night side plasmasphere, J. Geophys. Res., 83, 5773–5777, 1978.

  15. Park, C. G., D. L. Carpenter, and D. B. Wiggin, Electron density in the plasmasphere: whistler data on solar cycle, annual, and diurnal variations, J. Geophys. Res., 83, 3137–3144, 1978.

  16. Ralchovski, T. M., Electric field in the inner plasmasphere obtained from whistlers daytime observations, Rep. Bulg. Acad. Sci., 34, 1503–1504, 1981.

  17. Sagredo, J. L., I. D. Smith, and K. Bullough, The determination of whistler nose-frequency and minimum delay and its implication for the measurements of the east-west electric field and tube content in the magnetosphere, J. Atmos. Terr. Phys., 35, 2035–2046, 1973.

  18. Saxton, J. M. and A. J. Smith, Quiet time plasmaspheric electric fields and plasmasphere, ionosphere coupling fluxes at L = 2.5, Planet. Space Sci., 37, 283–293, 1989.

  19. Sazhin, S. S., M. Hayakawa, and K. Bullough, Whistler diagnostics of magnetospheric parameters: A review, Ann. Geophys., 10, 293–308, 1992.

  20. Shimakura, S., M. Moriizumi, and M. Hayakawa, Propagation mechanism of very unusual low latitude whistlers with additional traces of the earthionosphere waveguide propagation effect, Planet. Space Sci., 39, 611–616, 1991.

  21. Singh, A. K., Study of inner magnetosphere by VLF waves, Ph.D. Thesis, Banaras Hindu Univ., India, 1995.

  22. Singh, R. P., Whistler studies at Low Latitudes: A review, Ind. J. Rad. Space Phys., 22, 139–155, 1993a.

  23. Singh, R. P., Lalmani, and U. P. Singh, Electron density distribution derived from low latitude whistler studies, Ann. Geophys., 11, 1011–1017, 1993.

  24. Singh, R. P., A. K. Singh, and D. K. Singh, Plasmaspheric parameters as determined from whistler spectrograms: a review, J. Atmos. Solar Terr. Phys., 60, 495–508, 1998.

  25. Singh, U. P., Whistlers/VLF Emissions and Related phenomena, Ph.D. Thesis, Banaras Hindu Univ., India, 1993b.

  26. Singh, U. P. and R. P. Singh, Study of plasmasphere ionosphere coupling fluxes, J. Atmos. Solar Terr. Phys., 59, 1321–1327, 1997.

  27. Singh, U. P., A. K. Singh, Lalmani, R. P. Singh, and R. N. Singh, Hybridmode propagation of whistlers at low latitudes, Ind. J. Rad. Space Phys., 21, 246–249, 1992.

  28. Somayajulu, V. V., M. Rao, and B. A. P. Tantry, Whistlers at low latitude, Ind. J. Rad. Space Phys., 1, 102–118, 1972.

  29. Strangeways, H. J., A model for the electron temperature variation along geomagnetic field lines and its effect on electron density profiles and VLF paths, J. Atmos. Terr. Phys., 48, 671–683, 1986.

  30. Tarcsai, G., Candidate of science thesis, Hungarian Academy of Sciences, Budapest, 1981.

  31. Tarcsai, G., Ionosphere-plasmasphere electron fluxes at middle latitudes observed from whistlers, Adv. Space Res., 5, 155–158, 1985.

  32. Tarcsai, G., P. Szemeredy, and L. Hegymegi, Average electron density profiles in the plasmasphere between L = 1.4 and 3.2 deduced from whistlers, J. Atmos. Terr. Phys., 50, 607–611, 1988.

  33. Tarcsai, G., H. J. Strangeways, and M. J. Rycroft, Error sources and travel time residuals in plasmaspheric whistler interpretation, J. Atmos. Terr. Phys., 51, 249–258, 1989.

Download references

Author information



Corresponding author

Correspondence to R. P. Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, R.P., Singh, U.P., Singh, A.K. et al. A case study of whistlers recorded at Varanasi (L = 1.07). Earth Planet Sp 50, 865–872 (1998).

Download citation


  • Total Electron Content
  • Whistler Wave
  • Ionospheric Path
  • Equatorial Electron Density
  • Group Travel Time