Skip to main content

A case study of whistlers recorded at Varanasi (L = 1.07)

Abstract

Large number of high dispersion whistlers recorded at low latitude station Varanasi (L = 1.07) are analysed and it is find out that they have propagated along L 2.12–2.76. This is explained by considering the propagation of whistlers through the earth-ionosphere wave guide after exiting from the duct towards the equator. Using diffusive equilibrium model (DE-1), we have estimated equatorial electron density, total electron content in a flux tube and large scale convective electric fields which are in good agreement with the results reported by other workers from the analysis of mid latitude whistlers. The significance of this paper is to probe mid latitude plasmasphere using whistlers recorded at low latitudes. Further, an attempt has been made to study the propagation mechanism of low latitude whistlers.

References

  • Andrews, M. K., F. B. Knox, and N. R. Thomson, Magnetospheric electric fields and protonospheric coupling fluxes inferred from simultaneous phase and group path measurement on whistler-mode signals, Planet. Space Sci., 26, 171–183, 1978.

    Article  Google Scholar 

  • Bernard, L. C., A new nose extension method for whistlers, J. Atmos. Terr. Phys., 35, 871–880, 1973.

    Article  Google Scholar 

  • Block, L. P. and D. L. Carpenter, Derivation of magnetospheric electric fields from whistler data in a dynamic geomagnetic field, J. Geophys. Res., 79, 2783–2789, 1974.

    Article  Google Scholar 

  • Carpenter, D. L., New whistler evidence of a dynamo origin of electric fields in the quiet plasmasphere, J. Geophys. Res., 83, 1558–1564, 1978.

    Article  Google Scholar 

  • Carpenter, D. L., K. Stone, J. C. Siren, and T. L. Crystal, Magnetospheric electric field deduced from drifting whistler paths, J. Geophys. Res., 77, 2819–2836, 1972.

    Article  Google Scholar 

  • Dowden, R. L. and G. M. Allcock, Determination of nose frequency of non-nose whistlers, J. Atmos. Terr. Phys., 33, 1125–1129, 1971.

    Article  Google Scholar 

  • Hamar, D., G. Tarcsai, J. Lichtenberger, A. J. Smith, and K. H. Yearby, Fine structure of whistler recorded digitally at Halley, Antarctica, J. Atmos. Terr. Phys., 52, 801–810, 1990.

    Article  Google Scholar 

  • Khosa, P. N., M. M. Ahmad, and Lalmani, Whistler observation of magnetospheric electric field in the night side plasmasphere at low latitudes, The Moon and Planet, 27, 453–462, 1982.

    Article  Google Scholar 

  • Lalmani, A. Ahmad, and M. M. Ahmad, Ionosphere plasmasphere coupling electron fluxes from low latitude whistler studies at Nainital during geomagnetic storm, Planet. Space Sci., 40, 1409–1418, 1992.

    Article  Google Scholar 

  • Lalmani, A. Ahmad, and R. Singh, An estimate of quiet time plasmaspheric electric fields from whistler observations at low latitude, J. Geomag. Geoelectr., 48, 211–220, 1996.

    Article  Google Scholar 

  • Mishra, K. D., Lalmani, and B. D. Singh, Magnetospheric electric field from low latitude whistlers during magnetic storm, Planet. Space Sci., 28, 449–452, 1980.

    Article  Google Scholar 

  • Park, C. G., Methods of determining electron concentration in the magneto-sphere from nose whistlers, Tech. Report No. 3454-1, Radioscience Lab., Stanford University, Stanford, 1972.

    Google Scholar 

  • Park, C. G., Substorm electric fields in the evening plasmasphere and their effects on the underlying F-layer, J. Geophys. Res., 81, 2283–2288, 1976.

    Article  Google Scholar 

  • Park, C. G., Whistler observations of substorm electric fields in night side plasmasphere, J. Geophys. Res., 83, 5773–5777, 1978.

    Article  Google Scholar 

  • Park, C. G., D. L. Carpenter, and D. B. Wiggin, Electron density in the plasmasphere: whistler data on solar cycle, annual, and diurnal variations, J. Geophys. Res., 83, 3137–3144, 1978.

    Article  Google Scholar 

  • Ralchovski, T. M., Electric field in the inner plasmasphere obtained from whistlers daytime observations, Rep. Bulg. Acad. Sci., 34, 1503–1504, 1981.

    Google Scholar 

  • Sagredo, J. L., I. D. Smith, and K. Bullough, The determination of whistler nose-frequency and minimum delay and its implication for the measurements of the east-west electric field and tube content in the magnetosphere, J. Atmos. Terr. Phys., 35, 2035–2046, 1973.

    Article  Google Scholar 

  • Saxton, J. M. and A. J. Smith, Quiet time plasmaspheric electric fields and plasmasphere, ionosphere coupling fluxes at L = 2.5, Planet. Space Sci., 37, 283–293, 1989.

    Article  Google Scholar 

  • Sazhin, S. S., M. Hayakawa, and K. Bullough, Whistler diagnostics of magnetospheric parameters: A review, Ann. Geophys., 10, 293–308, 1992.

    Google Scholar 

  • Shimakura, S., M. Moriizumi, and M. Hayakawa, Propagation mechanism of very unusual low latitude whistlers with additional traces of the earthionosphere waveguide propagation effect, Planet. Space Sci., 39, 611–616, 1991.

    Article  Google Scholar 

  • Singh, A. K., Study of inner magnetosphere by VLF waves, Ph.D. Thesis, Banaras Hindu Univ., India, 1995.

    Google Scholar 

  • Singh, R. P., Whistler studies at Low Latitudes: A review, Ind. J. Rad. Space Phys., 22, 139–155, 1993a.

    Google Scholar 

  • Singh, R. P., Lalmani, and U. P. Singh, Electron density distribution derived from low latitude whistler studies, Ann. Geophys., 11, 1011–1017, 1993.

    Google Scholar 

  • Singh, R. P., A. K. Singh, and D. K. Singh, Plasmaspheric parameters as determined from whistler spectrograms: a review, J. Atmos. Solar Terr. Phys., 60, 495–508, 1998.

    Article  Google Scholar 

  • Singh, U. P., Whistlers/VLF Emissions and Related phenomena, Ph.D. Thesis, Banaras Hindu Univ., India, 1993b.

    Google Scholar 

  • Singh, U. P. and R. P. Singh, Study of plasmasphere ionosphere coupling fluxes, J. Atmos. Solar Terr. Phys., 59, 1321–1327, 1997.

    Article  Google Scholar 

  • Singh, U. P., A. K. Singh, Lalmani, R. P. Singh, and R. N. Singh, Hybridmode propagation of whistlers at low latitudes, Ind. J. Rad. Space Phys., 21, 246–249, 1992.

    Google Scholar 

  • Somayajulu, V. V., M. Rao, and B. A. P. Tantry, Whistlers at low latitude, Ind. J. Rad. Space Phys., 1, 102–118, 1972.

    Google Scholar 

  • Strangeways, H. J., A model for the electron temperature variation along geomagnetic field lines and its effect on electron density profiles and VLF paths, J. Atmos. Terr. Phys., 48, 671–683, 1986.

    Article  Google Scholar 

  • Tarcsai, G., Candidate of science thesis, Hungarian Academy of Sciences, Budapest, 1981.

    Google Scholar 

  • Tarcsai, G., Ionosphere-plasmasphere electron fluxes at middle latitudes observed from whistlers, Adv. Space Res., 5, 155–158, 1985.

    Article  Google Scholar 

  • Tarcsai, G., P. Szemeredy, and L. Hegymegi, Average electron density profiles in the plasmasphere between L = 1.4 and 3.2 deduced from whistlers, J. Atmos. Terr. Phys., 50, 607–611, 1988.

    Article  Google Scholar 

  • Tarcsai, G., H. J. Strangeways, and M. J. Rycroft, Error sources and travel time residuals in plasmaspheric whistler interpretation, J. Atmos. Terr. Phys., 51, 249–258, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, R.P., Singh, U.P., Singh, A.K. et al. A case study of whistlers recorded at Varanasi (L = 1.07). Earth Planet Sp 50, 865–872 (1998). https://doi.org/10.1186/BF03352180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352180

Keywords

  • Total Electron Content
  • Whistler Wave
  • Ionospheric Path
  • Equatorial Electron Density
  • Group Travel Time