Skip to main content

Advertisement

The IMF control of the Martian bow shock and plasma flow in the magnetosheath. Predictions of 3-D simulations and observations

Article metrics

  • 225 Accesses

  • 12 Citations

Abstract

Recent three-dimensional simulations of the Martian plasma and magnetic field environment found some unique effects—a strong asymmetry of the bow shock and the magnetic field draping, asymmetry of plasma inflow to the wake, formation of secondary shocks near the boundary of the magnetospheric cavity. The predictions of the models are testified using the Phobos-2 data. It is shown, that, although, the models reproduce some features of the bow shock and plasma flow around the planet, the real picture appears to be more variable and complicated. We suppose that addition of planetary plasma originated from the atmosphere/exosphere and effects of mass-loading is necessary modification of three-dimensional models.

References

  1. Alexander, C. J., J. G. Luhmann, and C. T. Russell, Interplanetary field control of the Venus bow shock: Evidence for cometlike pickup, Geophys. Res. Lett., 13, 917–920, 1986.

  2. Bogdanov, A., K. Sauer, K. Baumgärtel, and K. Srivastava, Plasma structures at weakly outgassing comets-results from biion fluid analysis, Planet. Space Sci., 44, 519–528, 1996.

  3. Brecht, S. H., Hybrid simulations of the magnetic topology of Mars, J. Geophys. Res., 102, 4743–4750, 1997a.

  4. Brecht, S. H., Solar wind proton deposition into the Martian atmosphere, J. Geophys. Res., 102, 11287–11294, 1997b.

  5. Brecht, S. H., The solar wind interaction with Mars: 3-D hybrid, in Abstracts for the 8th Scientific Assembly of IAGA, p. 431, Uppsala, Sweden, 1997c.

  6. Cloutier, P. A., Solar wind interaction with planetary ionospheres, in Solar Wind Interaction with Planets Mercury, Venus, Mars, pp. 111–119, NASA, Spec. Publ. SP-397, 1976.

  7. Delva, M., U. Nischelwitzer, and K. Schwingenschuh, Despinning and tests of the MAGMA data in orbits around Mars, IWF-9407 report of IKI, Graz, Austria, 1994.

  8. Dolginov, S. S., E. Dubinin, Ye. Yeroshenko, P. Israelevich, and I. Podgorny, About the configuration of the magnetic field in the Venus tail, Kosmi. Issled., 19, 624–633, 1981.

  9. Dubinin, E., K. Sauer, R. Lundin, O. Norberg, J.-G. Trotignon, K. Schwingenschuh, M. Delva, and W. Riedler, Plasma characteristics of the boundary layer in the martian magnetosphere, J. Geophys. Res., 101, 27061–27075, 1996a.

  10. Dubinin, E., K. Sauer, R. Lundin, K. Baumgärtel, and A. Bogdanov, Structuring of the transition region (plasma mantle) of the Martian magnetosphere, Geophys. Res. Lett., 23, 785–788, 1996b.

  11. Lipatov, A., K. Sauer, and K. Baumgärtel, 2.5 hybrid code simulation of the solar wind interaction with weak comets and related objects, Adv. Space Res., 20, (2)279-(2)282, 1997.

  12. Lundin, R. and E. Dubinin, Phobos-2 results on the ionospheric plasma escape from Mars, Adv. Space Res., 12, (9)255–(9)263, 1992.

  13. Lundin, R., E. Dubinin, H. Koskinen, O. Norberg, N. Pissarenko, and S. Barabash, On the momentum transfer on the solar wind to the Martian topside ionosphere, Geophys. Res. Lett., 18, 1059–1062, 1991.

  14. McComas, D. E., H. E. Spence, C. T. Russell, and M. A. Saunders, The average magnetic field draping and plasma properties of the Venus magnetotail, J. Geophys. Res., 91, 7939–7953, 1986.

  15. Phillips, J. L., J. G. Luhmann, C. T. Russell, and K. R. Moore, Finite Larmor radius effects on ion pickup at Venus, J. Geophys. Res., 92, 9920–9930, 1987.

  16. Phillips, J. L., J. G. Luhmann, W. C. Knudsen, and L. H. Brace, Asymmetries in the location of Venus ionopause, J. Geophys. Res., 93, 3927–3941, 1988.

  17. Romanov, S., Asymmetry of the region interaction of the solar wind with Venus according to the data of the Venera-9, Venera-10 spacecraft, Kosmi. Issled., 16, 318–319, 1978.

  18. Russell, C. T., E. Chou, J. G. Luhmann, P. Gaziz, L. H. Brace, and W. R. Hoegy, Solar and Interplanetary control of the location of the Venus bow shock, J. Geophys. Res., 93, 5461–5469, 1988.

  19. Saunders, M. A. and C. T. Russell, Average dimensions and magnetic structures of the distant Venus magnetotail, J. Geophys. Res., 91, 5589–5604, 1986.

  20. Schwingenschuh, K., W. Riedler, H. Lichtenegger et al., Martian bow shock: Phobos observations, Geophys. Res. Lett., 17, 889–892, 1990.

  21. Slavin, J. A., D. S. Intriligator, and E. J. Smith, Pioneer-Venus Orbiter magnetic field and plasma observations in the Venus magnetotail, J. Geophys. Res., 94, 2383–2398, 1989.

  22. Slavin, J. A., M. Verigin, K. Gringuuz et al., The solar wind interaction with Mars: The Phobos-2 bow shock observations on 24 March 1989, in Plasma Environments of Non-Magnetic Planets, edited by T. Gombosi, pp. 279–283, COSPAR Colloq. Ser., vol. 4, Pergamon Press, N.Y., 1993.

  23. Tanaka, T., Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: Calculation by a new MHD simulation scheme, J. Geophys. Res., 98, 17251–17262, 1993.

  24. Trotignon, J.-G., E. Dubinin, R. Grard, S. Barabash, and R. Lundin, Martian planetopause as seen by the plasma wave system onboard Phobos-2, J. Geophys. Res., 101, 24965–24977, 1996.

  25. Verigin, M. I., K. I. Gringauz, G. A. Kotova et al., The dependence of the martian magnetopause and bow shock on solar wind ram pressure according to Phobos-2 TAUS ion spectrometer measurements, J. Geophys. Res., 98, 1303–1309, 1993.

  26. Zhang, T. L., K. Schwingenschuh, H. Lichtenegger, W. Riedler, C. T. Russell, and J. G. Luhmann, Interplanetary magnetic field control of the Mars bow shock: Evidence for Venus like interaction, J. Geophys. Res., 96, 11265–11269, 1991.

Download references

Author information

Correspondence to E. Dubinin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dubinin, E., Sauer, K., Delva, M. et al. The IMF control of the Martian bow shock and plasma flow in the magnetosheath. Predictions of 3-D simulations and observations. Earth Planet Sp 50, 873–882 (1998) doi:10.1186/BF03352181

Download citation

Keywords

  • Solar Wind
  • Secondary Shock
  • Solar Wind Condition
  • Solar Wind Interaction
  • Undisturbed Solar Wind