Skip to main content

A new approach to geophysical real-time measurements on a deep-sea floor using decommissioned submarine cables

Abstract

In order to better understand earthquake generation, tectonics at plate boundaries, and better image the Earth’s deep structures, real-time geophysical measurements in the ocean are required. We therefore attempted to use decommissioned submarine cables, TPC-1 and TPC-2. An OBS was successfully linked to the TPC-1 on the landward slope of the Izu-Bonin Trench in 1997. The OBS detected co-seismic and gradual changes during a Mw 6.1 earthquake just below the station at 80 km depth on November 11, 1997. A pressure sensor co-registered a change equivalent to 50 cm sea-level change. This suggests a high possibility detecting silent earthquakes or earthquake precursors if they exist.

A multi-disciplinary geophysical station has been developed for deep-sea floor using TPC-2 since 1995. The station comprises eight instrument sets: broadband seismometers, geodetic measurements, hydrophone array, deep-sea digital camera, CTD, etc.

These activities are examples that decommissioned submarine cables can be great global resources for real-time cost-effective geophysical measurements on a deep-sea floor.

References

  1. Chave, A., R. Butler, R. A. Petitt, Jr., D. R. Yoerger, F. B. Wooding, A. D. Bowen, L. E. Freitag, J. Catipovic, F. K. Duennebier, D. Harris, A. H. Dodeman, and S. T. Brewer, H2O: The Hawaii-2 Observatory, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 114–115, Okinawa, Japan, 1997.

  2. Craig, Y., K. Horiba, A. Farley, J. A. Welhan, K.-R. Kim, and R. N. Hey, Hydrothermal vents in the Mariana Trough: results of the first ALVINE dives, EOS Trans. AGU, 68, 1531, 1987.

    Google Scholar 

  3. Eguchi, T., Y. Fujinawa, E. Fujita, S. Iwasaki, I. Watanabe, and H. Fujiwara, An observation network of ocean-bottom seismometers deployed at the Sagami Trough subduction zone, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 143–146, Okinawa, 1997.

  4. Fujisawa, K., S. Tateyama, and J. Funasaki, Permanent ocean-bottom earthquake and tsunami observation system off the Boso Peninsula, Weather Service Bull., 53, 127–166, 1986 (in Japanese).

    Google Scholar 

  5. Furukawa, H., A. Nishizawa, and A. Asada, Monitoring system for sub-marine volcanic activities, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 153–156, Okinawa, 1997.

  6. Gamo, T., H. Chiba, P. Fryer, J. Ishibashi, T. Ishii, L. E. Johnson, K. Kelly, H. Masuda, S. Ohta, A.-L. Reysenbach, P. A. Rona, T. Shibata, J. Tamaoka, H. Tanaka, U. Tsunogai, T. Yamaguchi, and K. Fujioka, Mariana 1992 diving surveys by “Shinkai 6500” (Y920cruise): Revisits to the Mid-Mariana hydrothermal area and discovery of hydrothermal vents in the southern Mariana region, JAMSTEC Deep Sea Res., 10, 154–162, 1994.

    Google Scholar 

  7. Grand, S. R., D. van der Hilst, and S. Widiyantro, Global seismic tomography: A snapshot of convection in the Earth, Geol. Soc. Am., Today, 7, No. 4, 1–7, 1997.

    Google Scholar 

  8. Hawkins, J. W., P. F. Lonsdale, J. D. Macdougall, and A. M. Volpe, Petrology of the axial ridge of the Mariana Trough backarc spreading center, Earth Planet. Sci. Lett., 100, 226–250, 1990.

    Article  Google Scholar 

  9. IRIS Steering Committee for scientific use of submarine cables, Scientific use of submarine telecommunication cable, EOS Trans. AGU, 73, 97, 100–101, 1992.

    Google Scholar 

  10. Ishii, T., P. T. Robinson, H. Maekawa, and R. Fiske, Petrological studies of peridotites from diapiritick serpentine seamounts in the Izu-Ogasawara-Mariana forearc, Leg., 125, Proc. Ocean Drill. Proc., Scientific Results, 125, 445–485, 1992.

    Google Scholar 

  11. Iwase, R., H. Momma, and K. Kawaguchi, The real-time and long-term deep-sea floor observation using the multisensor, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 160–162, Okinawa, 1997.

  12. JMA Seismology and Volcanology Department, Permanent ocean bottom seismograph observation system, Technical Rep. Meteorological Res. Inst., 4, 1–233, 1980 (in Japanese).

    Google Scholar 

  13. Kanazawa, T. and A. Hasegawa, Ocean bottom observatory for earthquakes and Tsunami off Sanriku, north-eastern Japan using submarine cable, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 208–209, Okinawa, 1997.

  14. Karig, D. E., Structural history of the Mariana island arc system, Geol. Soc. Am. Bull., 82, 323–344, 1971.

    Article  Google Scholar 

  15. Karig, D. E., R. N. Anderson, and L. D. Bibee, Characteristics of back arc spreading in the Mariana Trough, J. Geophys. Res., 83, 1213–1226, 1978.

    Article  Google Scholar 

  16. Kasahara, J., Engineering models of TPC-1 project, in Workshop on Scientific Use of Submarine Cables, edited by A. Chave and T. Pyle, pp. 266–273, Joint Oceanographic Inst., Washington, D.C., 1990.

    Google Scholar 

  17. Kasahara, J. and T. Sato, Broadband seismic observation in VENUS project, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 192–196, Okinawa, Japan, 1997.

  18. Kasahara, J., Y. Hamano, and T. Yukutake, Outline of earth science studies using the Trans Pacific Cable, Monthly Kaiyo, 22, 447–451, 1990 (in Japanese).

    Google Scholar 

  19. Kasahara, J., L. Kong, S. Koresawa, C. Igarashi, T. Yamaguchi, M. Suzuki, and R. Feng-Lu, Seismic observation at the Mariana trough at 18N and its relation to the detailed bathymetry, Preliminary Report of the Hakuho-Maru Cruise KH92-1, Ocean Research Institute, Univ. Tokyo, 77–98, 1993.

  20. Kasahara, J., T. Sato, and K. Fujioka, Intensive thermal upwelling at a seamount in the south Mariana Trough observed by ocean bottom seismic instruments using “Shinkai 6500” submersible, JAMSTEC Deep Sea Res., 10, 163–174, 1994.

    Google Scholar 

  21. Kasahara, J., H. Utada, and H. Kinoshita, GeO-TOC project-Reuse of submarine cables for seismic and geoelectric measurements, J. Phys. Earth, 43, 619–628, 1995.

    Article  Google Scholar 

  22. Kasahara, J., H. Utada, T. Sato, and H. Kinoshita, Submarine cable OBS using a retired submarine telecommunication cable: GeO-TOC program, Phys. Earth Planet. Inter., 108, 113–127, 1998.

    Article  Google Scholar 

  23. Katao, H., J. Kasahara, and S. Koresawa, Seismic observation using inertial navigation servo accelerometers for application to the broad-band ocean bottom seismometers, Bull. Earthq. Res. Inst., Univ. Tokyo, 65, 633–648, 1990.

    Google Scholar 

  24. Kawaguchi, K., H. Momma, and R. Iwase, VENUS project-Submarine cable recovery system, in Proceedings of the 1998 International Symposium on Undersea Technology, pp. 488–452, IEEE Ocean Engineering Society, Tokyo, Japan, 1998.

    Google Scholar 

  25. KDD, Special Issue on the Trans Pacific Cable-1, KDD Technical Jour., 42, pp. 1–141, 1964.

    Google Scholar 

  26. KDD, Special Issue on the Trans Pacific Cable-2, KDD Technical Jour., 88, pp. 3–75, 1976.

    Google Scholar 

  27. Kinoshita, H., Cable-connected submarine environment monitor system, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 119–125, Okinawa, 1997.

  28. Kong, L., N. Seama, H. Fujimoto, J. Kasahara, and K92-1 shipboard scientific party, Segmentation of the Mariana Trough backarc spreading center at 18N, InterRidge News, 1, 2–5, 1992.

    Google Scholar 

  29. Kuramoto, S., K. Suyehiro, A. Klaus, H. Tokuyama, M. Shinohara, J. Ashi, F. Yamamoto, A. Tairai, and Shipboard scientific party, Structure of northern Izu-Bonin arctrench system investigated by multichannel and single channel seismic reflection profiling, EOS Trans. AGU, 72(44), 247, 1991.

    Google Scholar 

  30. Matsumoto, T., M. Kimura, and C. Uechi, Surface deformation and origin of large-scale Tsunami in the southwesternmost part of the Ryukyu arc, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 76–77, Okinawa, 1997.

  31. McPhaden, M. J., The tropical atmosphere ocean array is completed, Bull. Am. Meteorol. Soc., 76, 739–741, 1995.

    Google Scholar 

  32. Milburm, H. B., P. D. McLain, and C. Meining, ATLAS buoy reengineering for next decade, in Proceedings of Ocean ’96, pp. 698–702, MTS/IEEE, Florida, U.S.A., 1996.

  33. Miyazaki, N. and F. Nakahara, Establishment of receiving system of whale sound using submarine cables, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 78–81, Okinawa, 1997.

  34. Miyazaki, T., Y. Murakami, and T. Nakatukasa, Development of geomag-netic and electrical fields observation system, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 157–159, Okinawa, 1997.

  35. Momma, H., Y. Shirasaki, and J. Kasahara, The VENUS project-Instrumentation and underwater work system, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 103–108, Okinawa, Japan, 1997.

  36. Nagaya, Y. and T. Yabuki, Detection of crustal deformation on the seafloor by acoustic ranging, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 189–191, Okinawa, 1997.

  37. Nagumo, S. and D. A. Walker, Ocean bottom geoscience observation: Reuse of transoceanic telecommunication cables, EOS Trans. AGU, 70, 673–677, 1989.

    Article  Google Scholar 

  38. Ossaka, J., Submarine Volcano near Japan, 279 pp., Univ. Tokai Press, Tokyo, 1991 (in Japanese).

  39. Shimura, S. (ed.), International Submarine Cable Systems, 507 pp., KDD Engineering and Consulting, Inc., Tokyo, 1984.

  40. Shirasaki, Y., J. Kojima, and Y. Kato, The VENUS project-Data transmission distribution system, in Proceedings of International Workshop on Scientific Use of Submarine Cables, pp. 109–113, Okinawa, Japan, 1997.

  41. Urabe, T. and M. Mizoue, Off Izu-Toho submarine system, Monthly Kaiyo, 28, 219–224, 1996 (in Japanese).

    Google Scholar 

  42. U.S. Department of Commerce, 1990 WorlD’ s Submarine Cable Systems, NTIA-CR-91-42, 1991.

  43. van der Hilst, R., S. Widiyatoro, and E. R. Engdahl, Evidence of deep mantle circulation from global tomography, Nature, 386, 578–584, 1997.

    Article  Google Scholar 

  44. Yoshida, Y., K. Satake, and K. Abe, The large normal faulting Mariana earthquake of April 5, 1990 in uncoupled subduction zone, Geophys. Res. Lett., 19, 297–300, 1990.

    Article  Google Scholar 

  45. Zhang, Y. S. and T. Tanimoto, Highresolution global upper mantle structure and plate tectonics, J. Geophys. Res., 98, 9793–9823, 1993.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junzo Kasahara.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kasahara, J., Sato, T., Momma, H. et al. A new approach to geophysical real-time measurements on a deep-sea floor using decommissioned submarine cables. Earth Planet Sp 50, 913–925 (1998). https://doi.org/10.1186/BF03352187

Download citation

Keywords

  • Hydrophone
  • Ocean Bottom Seismometer
  • Submarine Cable
  • Broadband Seismometer
  • Hydrophone Array