Skip to main content

Determination of the absolute depths of the mantle transition zone discontinuities beneath China: Effect of stagnant slabs on transition zone discontinuities

Abstract

Broadband seismic waveform data are stacked to investigate the mantle discontinuities beneath a station. A polarized filter is devised to remove pseudo-signals in the stacked traces, which might be otherwise misinterpreted as a discontinuity. The depth of a mantle discontinuity determined in previous studies depends on the reference model. We suggest the use of data sets which have a range of epicentral distances to the investigated station. The observed travel time of the P-to-S converted phases as a function of epicentral distance can be used to constrain the proper reference model. When the technique is applied to real data, we can determine the absolute depth of a discontinuity with an accuracy of approximately ±10 km. The method is applied to the broadband data of the CDSN stations. There is no significant depression observed for any of the stations except BJI, implying that the lateral scale of the trough in the ‘660-km’ discontinuity under northeast China is smaller than suggested in previous SS precursors studies. Beneath station BJI, the ‘410-km’ and ‘660-km’ discontinuities are elevated 10 km and depressed 30 km, respectively, resulting in an extremely thick transition zone. This may be attributed to the cold pacific plate that exists in the transition zone of the same region. Meanwhile, at station MDJ, where the subducted pacific plate is also found in the mantle transition zone, a multiple-discontinuity structure is observed rather than a depressed ‘660-km’ discontinuity. At station SSE, there is no depression of the ‘660-km’ discontinuity, suggesting that there is no significant difference of temperature at depths around 660 km between SSE and the average mantle.

References

  1. Efron, E. and R. Tibshirani, Bootstrap methods for standard errors, confidence interval, and other measures of statistical accuracy, Statis. Sci., 1, 54–77, 1986.

    Article  Google Scholar 

  2. Flanagan, M. P. and P. M. Shearer, Glabal mapping of the topography on the transition zone velocity discontinuities by stacking SS precursors, J. Geophys. Res., 103, 2673–2692, 1998.

    Article  Google Scholar 

  3. Fukao, Y., M. Obayashi, M. Inoue, and M. Nenbai, Subducting slabs stagnant in the mantle transition zone, J. Geophys. Res., 97, 4809–4822, 1992.

    Article  Google Scholar 

  4. Grand, S. P. and D. V. Helmberger, Upper mantle shear structure of the North America, Geophys. J. R. Astr. Soc., 76, 399–438, 1984.

    Article  Google Scholar 

  5. Haskell, N. A., Crustal reflections of the plane P and SV waves, J. Geophys. Res., 67, 4751–4767, 1962.

    Article  Google Scholar 

  6. Kennett, B. L. N. and E. R. Engdahl, Travel times for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465, 1991.

    Article  Google Scholar 

  7. Koch, M., Bootstrap inversion for vertical and lateral variations of the S wave structure and the vp /vs -ratio from shallow earthquakes in the Rhinergraben seismic zone, Germany, Tectonophysics, 210, 91–115, 1992.

    Article  Google Scholar 

  8. Neele, F., H. De Regt, and J. VanDecar, Gross errors in uppermantle dis-continuity topography from underside reflection data, Geophys. J. Int., 129, 194–204, 1997.

    Article  Google Scholar 

  9. Niu, F. and H. Kawakatsu, Direct evidence for the undulation of the 660-km discontinuity beneath Tonga: Comparison of Japan and California array data, Geophys. Res. Lett., 22, 531–534, 1995.

    Article  Google Scholar 

  10. Niu, F. and H. Kawakatsu, Complex structure of the mantle discontinuities at the tip of the subducting slab beneath the northeast China: a preliminary investigation of broadband receiver functions, J. Phys. Earth, 44, 701–711, 1996.

    Article  Google Scholar 

  11. Petersen, N., J. Gossler, R. Kind, K. Stammler, and L. Vinnik, Precursors to SS and structure of transition zone of the north-western Pacific, Geophys. Res. Lett., 20, 281–284, 1993.

    Article  Google Scholar 

  12. Revenaugh, J. and S. A. Sipkin, Mantle discontinuity structure beneath China, J. Geophys. Res., 99, 21911–21927, 1994.

    Article  Google Scholar 

  13. Richards, M. A. and C. W. Wicks, Jr., S-P conversion from the transition zone beneath Tonga and the nature of the 670 km discontinuity, Geophys. J. Int., 101, 1–35, 1990.

    Article  Google Scholar 

  14. Sakurai, T., M. Obayashi, and Y. Fukao, Tomographic image of slab and mantle plume, Program and Abstracts, Seism. Soc. Japan, 1, 624, 1995 (in Japanese).

    Google Scholar 

  15. Shearer, P. M., Global mapping of upper mantle reflectors from long-period SS precursors, Geophys. J. Int., 115, 878–904, 1993.

    Article  Google Scholar 

  16. Shearer, P. M. and T. G. Masters, Global mapping of topography on the 660 km discontinuity, Nature, 355, 791–796, 1992.

    Article  Google Scholar 

  17. Tajima, F., Y. Fukao, M. Obayashi, and T. Sakurai, Evaluation of slab images in the northwestern Pacific, Earth Planets Space, 50, this issue, 953–964, 1998.

    Article  Google Scholar 

  18. Vacher, P., A. Mocquet, and C. Sotin, Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity, Phys. Earth Planet. Inter., 106, 277–300, 1998.

    Article  Google Scholar 

  19. van der Hilst, R., R. Engdahl, W. Spakman, and G. Nolet, Tomographic imaging of subducted lithosphere below north-west Pacific island arcs, Nature, 353, 37–43, 1991.

    Article  Google Scholar 

  20. Vidale, J. E. and H. M. Benz, Uppermantle seismic discontinuities and the thermal structure of subduction zones, Nature, 356, 678–682, 1992.

    Article  Google Scholar 

  21. Vinnik, L. P., Detection of waves converted from P to SV in mantle, Phys. Earth Planet. Inter., 15, 39–45, 1976.

    Article  Google Scholar 

  22. Vinnik, L. P., G. Kosarev, and N. Petersen, Mantle transition zone beneath Eurasia, Geophys. Res. Lett., 23, 1485–1488, 1996.

    Article  Google Scholar 

  23. Walck, M. C., The P-wave upper mantle shear structure beneath an active spreading center: the Gulf of California, Geophys. J. R. Astr. Soc., 76, 697–723, 1984.

    Article  Google Scholar 

  24. Wicks, C. W., Jr. and M. A. Richards, A detailed map of the 660-kilometer discontinuity beneath the Izu-Bonin subduction zone, Science, 261, 1424–1427, 1993.

    Article  Google Scholar 

  25. Zhou, H. W. and R. W. Clayton, P and S wave travel time inversions for subducting slab under the island arcs of Northeast Pacific, J. Geophys. Res., 95, 6829–6851, 1990.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fenglin Niu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, F., Kawakatsu, H. Determination of the absolute depths of the mantle transition zone discontinuities beneath China: Effect of stagnant slabs on transition zone discontinuities. Earth Planet Sp 50, 965–975 (1998). https://doi.org/10.1186/BF03352191

Download citation

Keywords

  • Transition Zone
  • Reference Model
  • Epicentral Distance
  • Converted Wave
  • Mantle Transition Zone