Skip to main content

Some remarks on the origin of seismic anisotropy in the D” layer

Abstract

Physical mechanisms of seismic anisotropy in the D” layer are examined based on seismological and mineral physics observations. The results of body-wave seismology on the fine structure of the D” layer and of mineral physics studies on the elastic constants and the lattice preferred orientation in lower mantle minerals as well as the shape preferred orientation of melt pockets are taken into account. Evidence of large but depth (pressure)-dependent elastic anisotropy of lower mantle minerals, particularly (Mg,Fe)O, and of tilted shape preferred orientation of sheared partial melts is summarized. It is shown that both shape preferred orientation of partial melts (or iron-rich secondary phases) and lattice preferred orientation of minerals with well-documented slip systems are difficult to reconcile with seismological observations. However, lattice preferred orientation of highly anisotropic mineral, (Mg,Fe)O, is consistent with most of the seismic observations if the dominant glide plane under the D” layer conditions is 100 rather than 110 as observed at lower pressures. Such a change in glide plane in MgO (or (Mg,Fe)O) is likely to occur as a result of pressure-induced change in elastic anisotropy and/or in the nature of chemical bonding (and possibly due to high temperatures). Both solid-state and partial melt mechanisms of anisotropy imply that the VSH > VSV (VSV > VSH) polarization anisotropy means horizontal (vertical) flow. In the solid-state mechanism, significant VSH > VSV in the D” layer beneath the circum-Pacific (Alaska and the Caribbean) implies horizontal shear at high stress caused presumably by the collision of subducting materials with the core-mantle boundary. Highly variable anisotropy beneath the central-Pacific can be attributed to solid-state fabrics caused by a complicated three-dimensional flow presumably related to the upwelling of plumes, but anisotropy in this region could also be attributed to the shape preferred orientation of melt pockets the presence of which is suggested by very low average velocities.

References

  1. Aki, K., Seismological evidence for the existence of soft thin layers in the upper mantle under Japan, J. Geophys. Res., 73, 585–594, 1968.

    Article  Google Scholar 

  2. Allégre, C. J. and D. L. Turcotte, Implications of a two-component marble-cake mantle, Nature, 323, 123–127, 1986.

    Article  Google Scholar 

  3. Anderson, O. L., Equation of State of Solids for Geophysics and Ceramic Sciences, pp. 405, Oxford University Press, 1995.

  4. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, Part 2., J. Geophys. Res., 57, 2199–2224, 1961.

    Article  Google Scholar 

  5. Buerger, M. J., Translation-gliding in crystals of the NaCl structural type, Amer. Mineral., 15, 226–238, 1930.

    Google Scholar 

  6. Bussod, G. Y. and J. M. Christie, Textural development and melt topology in spinel lherzolite experimentally deformed at hypersolidus conditions, J. Petrol., Spec. Issue, 17–39, 1991.

  7. Daines, M. J. and D. L. Kohlstedt, Influence of deformation on melt topology in peridotites, J. Geophys. Res., 102, 10,257–10,271, 1997.

    Article  Google Scholar 

  8. Duffy, T. S., R. J. Hemley, and H.-K. Mao, Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa, Phys. Rev. Lett., 74, 1371–1374, 1995.

    Article  Google Scholar 

  9. Edington, J. W., K. N. Melton, and C. P. Cutler, Superplasticity, Prog. Mater. Sci., 21, 63–170, 1976.

    Article  Google Scholar 

  10. Franssen, R., Rheology of synthetic rocksalt, Ph.D. Thesis, University of Utrecht, pp. 221, 1993.

  11. Garnero, E. J. and T. Lay, Lateral variation in lowermost mantle shear wave anisotropy beneath the north Pacific, J. Geophys. Res., 102, 8121–8135, 1997.

    Article  Google Scholar 

  12. Garnero, E. J., J. Revenaugh, Q. Williams, T. Lay, and L. H. Kellogg, Ultralow velocity zone at the core-mantle boundary, in The Core Mantle Boundary, edited by M. Gurnis, B. A. Buffett, E. Knittle, and M. Wysession, pp. 319–334, AGU Monograph, 1998.

  13. Gay, N. C., Pure shear and simple shear deformation of inhomogeneous viscous fluids, 1. Theory, Tectonophysics, 5, 211–234, 1968.

    Article  Google Scholar 

  14. Honda, S., D. A. Yuen, S. Balachandar, and D. Reuteler, Three-dimensional instabilities of mantle convection with multiple phase transitions, Science, 259, 1308–1311, 1993.

    Article  Google Scholar 

  15. Hudson, J. A., Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. R. astr. Soc., 64, 133–150, 1981.

    Article  Google Scholar 

  16. Isaak, D. G., R. E. Cohen, and M. E. Mehl, Calculated elastic constants and thermal properties of MgO at high pressures and temperatures, J. Geophys. Res., 95, 7055–7067, 1990.

    Article  Google Scholar 

  17. Jarvis, G. T. and W. R. Peltier, Convection models and geophysical observations, in Mantle Convection, edited by W. R. Peltier, pp. 479–593, Gordon and Breach, New York, 1989.

    Google Scholar 

  18. Kaneshima, S. and P. G. Silver, A search for source-side anisotropy, Geophys. Res. Lett., 19, 1049–1052, 1992.

    Article  Google Scholar 

  19. Karato, S., Seismic anisotropy: mechanisms and tectonic implications, in Rheology of Solids and of the Earth, edited by S. Karato and M. Toriumi, pp. 393–422, Oxford University Press, Oxford, 1989.

    Google Scholar 

  20. Karato, S., On the Lehmann discontinuity, Geophys. Res. Lett., 19, 2255–2258, 1992.

    Article  Google Scholar 

  21. Karato, S., Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett., 20, 1623–1626, 1993.

    Article  Google Scholar 

  22. Karato, S., Phase transformations and rheological properties of mantle minerals, in Earth’s Deep Interior, edited by D. J. Crossley, pp. 223–272, Gordon and Breach, New York, 1997.

    Google Scholar 

  23. Karato, S., Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection, PAGEOPH, 151, 565–587, 1998.

    Article  Google Scholar 

  24. Karato, S. and P. Wu, Rheology of the upper mantle: A synthesis, Science, 260, 771–778, 1993.

    Article  Google Scholar 

  25. Karato, S., S. Zhang, and H.-R. Wenk, Superplasticity in the Earth’s lower mantle: Evidence from seismic anisotropy and rock physics, Science, 270, 458–461, 1995.

    Article  Google Scholar 

  26. Karato, S., S. Zhang, M. R. Zimmerman, D. L. Kohlstedt, and M. Daines, Towards structural geology of the mantle, PAGEOPH, 151, 589–603, 1998.

    Article  Google Scholar 

  27. Karki, B. B., L. Stixrude, S. J. Clark, M. C. Warren, G. J. Ackland, and J. Crain, Structure and elasticity of MgO at high pressure, Amer. Mineral., 82, 51–60, 1997a.

    Google Scholar 

  28. Karki, B. B., L. Stixrude, S. J. Clark, M. C. Warren, G. J. Ackland, and J. Crain, Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures, Amer. Mineral., 82, 635–639, 1997b.

    Google Scholar 

  29. Kendall, J. M. and P. G. Silver, Constraints from seismic anisotropy on the nature of the lowermost mantle, Nature, 381, 409–412, 1996.

    Article  Google Scholar 

  30. Knittle, E. and R. Jeanloz, High-pressure metallization of FeO and implications for the Earth’s core, Geophys. Res. Lett., 13, 1541–1544, 1986.

    Article  Google Scholar 

  31. Knittle, E. and R. Jeanloz, Earth’s core-mantle boundary: Results of experiments at high pressures and temperatures, Science, 251, 1438–1443, 1991.

    Article  Google Scholar 

  32. Kohlstedt, D. L. and M. E. Zimmerman, Rheology of partially molten mantle rocks, Ann. Rev. Earth Planet. Sci., 24, 41–62, 1996.

    Article  Google Scholar 

  33. Lay, T., Q. Williams, and E. J. Garnero, The core-mantle boundary layer and deep earth dynamics, Nature, 392, 461–468, 1998a.

    Article  Google Scholar 

  34. Lay, T., Q. Williams, E. J. Garnero, L. Kellogg, B. Romanowicz, and M. E. Wysession, Seismic wave anisotropy in the D’ region and its implications, in The Core Mantle Boundary, edited by M. Gurnis, B. A. Buffett, E. Knittle, and M. Wysession, pp. 299–318, AGU Monograph, 1998b.

  35. Matzel, E., S. E. Sen, and S. P. Grand, Evidence for anisotropy in the deep mantle beneath Alaska, Geophys. Res. Lett., 23, 409–412, 1996.

    Article  Google Scholar 

  36. Maupin, V., On the possibility of anisotropy in the D’ layer as inferred from the polarization of diffracted S-waves, Phys. Earth Planet. Inter., 87, 1–32, 1994.

    Article  Google Scholar 

  37. Meade, C., P. G. Silver, and S. Kaneshima, Laboratory and seismological observations of lower mantle isotropy, Geophys. Res. Lett., 22, 1293–1296, 1995.

    Article  Google Scholar 

  38. Montagner, J.-P. and B. L. N. Kennett, How to reconcile body-wave and normal-mode reference Earth model, Geophys. J. Int., 91, 511–520, 1996.

    Article  Google Scholar 

  39. Morgan, W. J., Convection plumes in the lower mantle, Nature, 230, 42–43, 1971.

    Article  Google Scholar 

  40. Musgrave, M. J. P., Crystal Acoustics, pp. 288, Holiden-Day, San Francisco, 1970.

    Google Scholar 

  41. Poirier, J. P. and J.-L. Le Mouël, Does infiltration of core material into the lower mantle affect the observed geomagnetic field?, Phys. Earth Planet. Inter., 73, 29–37, 1992.

    Article  Google Scholar 

  42. Rice, R. W., Hotworking of oxides, in High Temperature Oxides, Part III, edited by A. M. Adler, pp. 2345–2381, Academic Press, New York, 1970.

    Google Scholar 

  43. Ringwood, A. E., Phase transformations and their bearing on the constitution and dynamics of the mantle, Geochim. Cosmochim. Acta, 55, 2083–2110, 1991.

    Article  Google Scholar 

  44. Ritsema, J., T. Lay, E. J. Garnero, and H. Benz, Seismic anisotropy in the lowermost mantle beneath the Pacific, Geophys. Res. Lett., 25, 1229–1232, 1998.

    Article  Google Scholar 

  45. Simmons, G. and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, pp. 370, The MIT Press, Cambridge, 1971.

    Google Scholar 

  46. Skrotzki, W. and P. Welch, Development of texture and microstructure in extruded ionic polycrystalline aggregates, Tectonophysics, 99, 47–61, 1983.

    Article  Google Scholar 

  47. Stacey, F. D. and D. E. Loper, The thermal boundary layer interpretation of D’ and its roe as a plume source, Phys. Earth Planet. Inter., 33, 45–55, 1983.

    Article  Google Scholar 

  48. Tullis, J., J. M. Christie, and D. J. Griggs, Microstructures and preferred orientations of experimentally deformed quartzites, Geol. Soc. Amer. Bull., 84, 297–314, 1973.

    Article  Google Scholar 

  49. Valenzuela, R. and M. E. Wysession, Illuminating the base of the mantle with diffracted waves, in The Core Mantle Boundary, edited by M. Gurnis, B. A. Buffett, E. Knittle, and M. Wysession, pp. 57–71, AGU Monograph, 1998.

  50. van der Hilst, R. D., S. Widiyantoro, and E. R. Engdahl, Evidence for deep mantle circulation from global tomography, Nature, 386, 578–584, 1997.

    Article  Google Scholar 

  51. van Houtte, P. and F. Wagner, Development of textures by slip and twinning, in Preferred Orientation in deformed Metals and Rocks: An Introduction to Modern Texture Analysis, edited by H.-R. Wenk, pp. 233–258, Academic Press, New York, 1985.

    Google Scholar 

  52. Vinnik, L., V. Farra, and B. Romanowicz, Observational evidence for diffracted SV in the shadow of the Earth’s core, Geophys. Res. Lett., 16, 519–522, 1989.

    Article  Google Scholar 

  53. Vinnik, L., B. Romanowicz, Y. Le Stunff, and L. Makeyeva, Seismic anisotropy in the D’ layer, Geophys. Res. Lett., 22, 1657–1660, 1995.

    Article  Google Scholar 

  54. Vinnik, L., L. Breger, and B. Romanowicz, Anisotropic structures at the base of the Earth’s mantle, Nature, 393, 564–567, 1998.

    Article  Google Scholar 

  55. Wenk, H.-R., C. S. Venkitasubramanyan, D. W. Baker, and F. L. Turner, Preferred orientation in experimentally deformed limestone, Contrib. Mineral. Petrol., 38, 81–114, 1973.

    Article  Google Scholar 

  56. Wenk, H.-R., G. Canova, Y. Bréchet, and L. Flandin, A deformation-based model for recrystallization of anisotropic materials, Acta Mater., 45, 3283–3296, 1997.

    Article  Google Scholar 

  57. Williams, Q. and E. J. Garnero, Seismic evidence for partial melt at the base of the Earth’s mantle, Science, 273, 1528–1530, 1996.

    Article  Google Scholar 

  58. Winchester, J. P. and K. C. Creager, Azimuthal anisotropy and abrupt transitions from slow to fast anomalies in the velocity structure of D’, Proc. 1997 IRIS Meeting, abstract, 1997.

  59. Woodhouse, J. H. and A. M. Dziewonski, Seismic modelling of the Earth’s large-scale three-dimensional structure, Philos. Trans. R. Soc. Lond., A328, 291–308, 1989.

    Article  Google Scholar 

  60. Zhang, S. and S. Karato, Simple shear deformation of CaTiO3 perovskite, Phys. Earth Planet. Inter., 1998 (submitted).

  61. Zhang, S., M. E. Zimmerman, M. J. Daines, S. Karato, and D. L. Kohlstedt, Lattice preferred orientation and melt distribution in experimentally sheared olivine-basalt rocks, EOS, Trans. AGU, 76, 281, 1995.

    Google Scholar 

  62. Zhang, S., S. Karato, and Y. Zhou, Simple shear deformation of olivine aggregates, Tectonophysics, 1998 (submitted).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shun-ichiro Karato.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karato, S. Some remarks on the origin of seismic anisotropy in the D” layer. Earth Planet Sp 50, 1019–1028 (1998). https://doi.org/10.1186/BF03352196

Download citation

Keywords

  • Elastic Constant
  • Lower Mantle
  • Elastic Anisotropy
  • Diffusion Creep
  • Dislocation Creep