Skip to main content

A note on latent heat release from disequilibrium phase transformations and deep seismogenesis

Abstract

Latent heat release by equilibrium mineralogical transformations in an adiabatically subducting slab reversibly perturbs temperatures and pressures so as to conserve entropy. However, latent heats of metastable transformations in such a slab yield irreversible isobaric temperature changes which increase entropy despite adiabatic constraints. As a result, latent heat release by metastable exothermic transformations can yield local superheating above the background adiabat, with the degree of potential superheating increasing with extent of metastable overstep. In real slabs, however, regions of metastably persisting low-pressure phases should undergo conductive warming from surrounding transformed material. Such warming should proceed more rapidly than warming of the bulk slab from the surrounding mantle, and the resulting decrease in metastable transition pressures will slightly decrease the degree of local superheating. Nonetheless, such local temperature increases may trigger seismic release of accumulated strain energy via a number of proposed mechanisms of shear instability. Adiabatic instability, in the form of shear localization in material with temperature-dependent rheology, is one mechanism which may be triggered by such latent heat release in metastable regions yet produce rupture that extends beyond the boundaries of such regions.

References

  1. Akaogi, M., H. Kojitani, K. Matsuzaka, and T. Suzuki, Postspinel transformations in the system Mg2SiO4-Fe2SiO4: Element partitioning, calo-rimetry, and thermodynamic calculation, in Properties of Earth and Planetary Materials at High Pressure and Temperature, edited by M. H. Manghnani and T. Yagi, pp. 373–384, American Geophysical Union, Washington, D.C., 1998.

    Google Scholar 

  2. Austrheim, H. and T. M. Boundy, Eclogite facies pseudotachylytes from the Bergen Arcs, western Norway: Records of rapid faulting and seismicity during eclogitization of the deep crust, Science, 265, 82–83, 1994.

    Article  Google Scholar 

  3. Austrheim, H., M. Erambert, and T. M. Boundy, Garnets recording deep crustal earthquakes, Earth Planet. Sci. Lett., 139, 223–238, 1996.

    Article  Google Scholar 

  4. Bina, C. R., Phase transition buoyancy contributions to stresses in subducting lithosphere, Geophys. Res. Lett., 23, 3563–3566, 1996.

    Article  Google Scholar 

  5. Bina, C. R., Patterns of deep seismicity reflect buoyancy stresses due to phase transitions, Geophys. Res. Lett., 24, 3301–3304, 1997.

    Article  Google Scholar 

  6. Brearley, A. J. and D. C. Rubie, Transformation mechanisms of San Carlos olivine to (Mg,Fe)2 SiO4 -phase under subduction zone conditions, Phys. Earth Planet. Inter., 86, 45–67, 1994.

    Article  Google Scholar 

  7. Bridgman, P. W., Polymorphic transitions and geological phenomena, Am. J. Sci., 243a, 90–97, 1945.

    Google Scholar 

  8. Burnley, P. C., The fate of olivine in subducting slabs: A reconnaissance study, Amer. Mineral., 80, 1293–1301, 1995.

    Google Scholar 

  9. Chai, M., J. M. Brown, and Y. Wang, Yield strength, slip systems and deformation induced phase transition of San Carlos olivine up to transition zone pressure at room temperature, in Properties of Earth and Planetary Materials at High Pressure and Temperature, edited by M. H. Manghnani and T. Yagi, pp. 483–494, American Geophysical Union, Washington, D.C., 1998.

    Google Scholar 

  10. Daessler, R. and D. A. Yuen, The effects of phase transition kinetics on subducting slabs, Geophys. Res. Lett., 20, 2603–2606, 1993.

    Article  Google Scholar 

  11. Daessler, R., D. A. Yuen, S. Karato, and M. R. Riedel, Two-dimensional thermo-kinetic model for the olivine-spinel phase transition in subducting slabs, Phys. Earth Planet. Inter., 94, 217–239, 1996.

    Article  Google Scholar 

  12. Devaux, J. P., G. Schubert, and C. Anderson, Formation of a metastable olivine wedge in a descending slab, J. Geophys. Res., 102, 24,627–24,637, 1997.

    Article  Google Scholar 

  13. Fei, Y., H.-K. Mao, and B. O. Mysen, Experimental determination of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high pressure and high temperature, J. Geophys. Res., 96, 2157–2169, 1991.

    Article  Google Scholar 

  14. Goto, K., Z. Suzuki, and H. Hamaguchi, Stress distribution due to olivine-spinel phase transition in descending plate and deep focus earthquakes, J. Geophys. Res., 92, 13,811–13,820, 1987.

    Article  Google Scholar 

  15. Green, H. W., II and H. Houston, The mechanics of deep earthquakes, Annu. Rev. Planet. Sci., 23, 169–213, 1995.

    Article  Google Scholar 

  16. Green, H. W., II and Y. Zhou, Transformation-induced faulting requires an exothermic reaction and explains the cessation of earthquakes at the base of the mantle transition zone, Tectonophys., 256, 39–56, 1996.

    Article  Google Scholar 

  17. Hobbs, B. E. and A. Ord, Plastic instabilities: Implications for the origin of intermediate and deep focus earthquakes, J. Geophys. Res., 93, 10,521–10,540, 1988.

    Article  Google Scholar 

  18. Hogrefe, A., D. C. Rubie, T. G. Sharp, and F. Seifert, Metastability of enstatite in deep subducting lithosphere, Nature, 372, 351–353, 1994.

    Article  Google Scholar 

  19. Jeanloz, R. and A. B. Thompson, Phase transitions and mantle discontinuities, Rev. Geophys. Space Phys., 21, 51–74, 1983.

    Article  Google Scholar 

  20. Jin, J., S.-I. Karato, and M. Obata, Mechanisms of shear localization in the continental lithosphere: Inference from the deformation microstructures of peridotites from the Ivrea zone, northwestern Italy, J. Struct. Geol., 20, 195–209, 1998.

    Article  Google Scholar 

  21. Kanamori, H., D. L. Anderson, and F. H. Heaton, Frictional melting during the rupture of the 1994 Bolivian earthquake, Science, 279, 839–842, 1998.

    Article  Google Scholar 

  22. Karato, S.-I., Phase transformations and rheological properties of mantle minerals, in Earth’s Deep Interior: The Doornbos Memorial Volume, edited by D. J. Crossley, pp. 223–272, Gordon and Breach, Amsterdam, 1997.

    Google Scholar 

  23. Kerschhofer, L., T. G. Sharp, and D. C. Rubie, Intracrystalline transformation of olivine to wadsleyite and ringwoodite under subduction zone conditions, Science, 274, 79–81, 1996.

    Article  Google Scholar 

  24. Kirby, S. H., W. B. Durham, and L. Stern, Mantle phase changes and deep-earthquake faulting in subducting slabs, Science, 252, 216–225, 1991.

    Article  Google Scholar 

  25. Kirby, S. H., S. Stein, E. A. Okal, and D. C. Rubie, Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere, Rev. Geophys., 34, 261–306, 1996.

    Article  Google Scholar 

  26. Klotz, I. M., Chemical Thermodynamics, 468 pp., W. A. Benjamin Inc., New York, 1964.

    Google Scholar 

  27. Kubo, T., E. Ohtani, T. Kato, H. Morishima, D. Yamazaki, A. Suzuki, K. Mibe, T. Kikegawa, and O. Shimomura, An in situ X ray diffraction study of the α-β transformation kinetics of Mg2 SiO4, Geophys. Res. Lett., 25, 695–698, 1998.

    Article  Google Scholar 

  28. Myers, S. C., T. C. Wallace, S. L. Beck, P. G. Silver, G. Zandt, J. VanDecar, and E. Minaya, Implications of spatial and temporal development of the aftershock sequence for the Mw 8.3 June 9, 1994 deep Bolivia earthquake, Geophys. Res. Lett., 22, 2269–2272, 1995.

    Article  Google Scholar 

  29. Obata, M. and S.-I. Karato, Ultramafic pseudotachylite from the Balmuccia peridotite, Ivrea-Verbano zone, northern Italy, Tectonophys., 242, 313–328, 1995.

    Article  Google Scholar 

  30. Ogawa, M., Shear instability in a viscoelastic material as the cause of deep focus earthquakes, J. Geophys. Res., 92, 13,801–13,810, 1987.

    Article  Google Scholar 

  31. Okal, E. A. and C. R. Bina, On the cessation of seismicity at the base of the transition zone, J. Seism., 2, 65–86, 1998.

    Article  Google Scholar 

  32. Pinsky, M. A., Partial Differential Equations and Boundary-Value Problems with Applications, 461 pp., McGraw-Hill, New York, 1991.

    Google Scholar 

  33. Regenauer-Lieb, K. and D. A. Yuen, Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere, Geophys. Res. Lett., 25, 2737–2740, 1998.

    Article  Google Scholar 

  34. Rubie, D. C. and C. R. Ross, II, Kinetics of the olivine-spinel transformation in subducting lithosphere: Experimental constraints and implications for deep slab processes, Phys. Earth Planet. Inter., 86, 223–241, 1994.

    Article  Google Scholar 

  35. Sharp, T. G. and D. C. Rubie, Catalysis of the olivine to spinel transformation by high-clinoenstatite, Science, 269, 1095–1098, 1995.

    Article  Google Scholar 

  36. Silver, P. G., S. L. Beck, T. C. Wallace, C. Meade, S. C. Myers, D. E. James, and R. Kuehnel, Rupture characteristics of the deep Bolivian earthquake of 9 June 1994 and the mechanism of deep-focus earthquakes, Science, 268, 69–73, 1995.

    Article  Google Scholar 

  37. Sung, C.-M. and R. G. Burns, Kinetics of the olivine-spinel transition: Implications to deep-focus earthquake genesis, Earth Planet. Sci. Lett., 32, 165–170, 1976a.

    Article  Google Scholar 

  38. Sung, C.-M. and R. G. Burns, Kinetics of the high-pressure phase transformations: Implications to the evolution of the olivine-spinel phase transition in the downgoing lithosphere and its consequences on the dynamics of the mantle, Tectonophys., 31, 1–32, 1976b.

    Article  Google Scholar 

  39. Vassiliou, M. S. and B. H. Hager, Subduction zone earthquakes and stress in slabs, Pure Appl. Geophys., 128, 547–624, 1988.

    Article  Google Scholar 

  40. Wiens, D. A. and H. J. Gilbert, Effect of slab temperature on deep-earthquake aftershock productivity and magnitude-frequency relations, Nature, 384, 153–156, 1996.

    Article  Google Scholar 

  41. Wiens, D. A., J. J. McGuire, and P. J. Shore, Evidence for transformational faulting from a deep double seismic zone in Tonga, Nature, 364, 790–793, 1993.

    Article  Google Scholar 

  42. Wiens, D. A., J. J. McGuire, P. J. Shore, M. G. Bevis, K. Draunidalo, G. Prasad, and S. P. Helu, A deep earthquake aftershock sequence and implications for the rupture mechanism of deep earthquakes, Nature, 372, 540–543, 1994.

    Article  Google Scholar 

  43. Woodland, A. B., The orthorhombic to high-P monoclinic phase transition in Mg-Fe pyroxenes: Can it produce a seismic discontinuity?, Geophys. Res. Lett., 25, 1241–1244, 1998.

    Article  Google Scholar 

  44. Yoshioka, S., R. Daessler, and D. A. Yuen, Stress fields associated with metastable phase transitions in descending slabs and deep-focus earthquakes, Phys. Earth Planet. Inter., 104, 345–361, 1997.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Craig R. Bina.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bina, C.R. A note on latent heat release from disequilibrium phase transformations and deep seismogenesis. Earth Planet Sp 50, 1029–1034 (1998). https://doi.org/10.1186/BF03352197

Download citation

Keywords

  • Olivine
  • Aftershock Sequence
  • Latent Heat Release
  • Deep Earthquake
  • Conductive Heating