Skip to main content

Mesoscale structures in the transition zone: Dynamical consequences of boundary layer activities

Abstract

Recent geophysical evidence from seismology, mineral physics, viscosity inversion shows that the mantle between 400 and 1000 km is extremely complicated, with intermediate scale structures present regionally as seismic reflectors under the 660 km discontinuity and bent plume-like structures under the transition zone. We have studied the dynamics of the transition zone with two models, an axisymmetric spherical-shell (2-D) model with a horizontally averaged temperature- and pressure-dependent viscosity and a 3-D Cartesian model with a depth-dependent viscosity. Two mantle phase transitions have been employed in both models. Results of the 2-D axisymmetric model show that the interaction of the lower mantle plumes with the transition zone can result in a horizontal channel flow right underneath the 660 km and in the birth of secondary plume some distance away from the lower mantle plume. The strength of the secondary plume increases in strength with larger viscosity contrast across the 660 km discontinuity. In the 3-D model we have found that with the presence of a second low viscosity zone somewhere between 660 and 1000 km, many secondary instabilities are developed in the second asthenosphere and the mesoscale thermal structure developed can become quite complex. Many small-scale plumes can emanate from the transition zone. Occasionally a very large plume burst, with a near-surface radius exceeding 1000 km, can develop from the hot lower-mantle material trapped in the second asthenosphere. Both the viscosity and the phase transition structure between 660 km and 1000 km can exert a significant influence on the plume distribution and cause singular plume eruption events in the upper mantle. Plume instabilities originating below the 660 km discontinuity in the western Pacific might have launched a large hot upwelling into the upper mantle, thus precipitating the massive flood basalt volcanism in the Ontong-Java region.

References

  1. Allegre, C. J., Limitation on the mass exchange between the upper and lower mantle: the evolving convection regime of the Earth, Earth Planet. Sci. Lett., 150, 1–6, 1997.

    Article  Google Scholar 

  2. Allegre, C. J. and D. L. Turcotte, Geodynamic mixing in the meso-sphere boundary layer and the origin of oceanic islands, Geophys. Res. Lett., 12, 207–210, 1985.

    Article  Google Scholar 

  3. Bercovici, D. and J. Mahoney, Double flood basalts and plume head separation at the 660-kilometer discontinuity, Science, 266, 1367–1369, 1994.

    Article  Google Scholar 

  4. Bijwaard, H. and W. Spakman, Tomographic evidence for a narrow whole mantle plume below Iceland, Earth Planet. Sci. Lett., 1998 (in press).

  5. Bijwaard, H., W. Spakman, and E. R. Engdahl, Closing the gap between regional and global travel time tomography, J. Geophys. Res., 1998 (in press).

  6. Birch, F., The earth’s mantle: elasticity and constitution, Trans. Am. Geophys. Union, 35, 79–85, 1954.

    Article  Google Scholar 

  7. Breuer, D. and T. Spohn, Possible flush instability in mantle convection at the Archaean-Proterozoic transition, Nature, 378, 608–610, 1995.

    Article  Google Scholar 

  8. Breuer, D., D. A. Yuen, and T. Spohn, Phase transitions in the Martian mantle: Implications for partially layered convection, Earth Planet. Sci. Lett., 148, 457–469, 1997.

    Article  Google Scholar 

  9. Brunet, D. and P. Machetel, Large-scale tectonic features induced by mantle avalanches with phase, temperature and pressure lateral variation of viscosity, J. Geophys. Res., 103, 4929–4945, 1998.

    Article  Google Scholar 

  10. Bunge, H.-P. and M. A. Richards, The origin of large scale structure in mantle convection: effects of plate motions and viscosity stratification, Geophys. Res. Lett., 23, 2987–2990, 1996.

    Article  Google Scholar 

  11. Cadek, O., H. Ciskova, and D. A. Yuen, Can long-wavelength dynamical signatures be compatible with layered convection?, Geophys. Res. Lett., 24, 2091–2094, 1997.

    Article  Google Scholar 

  12. Castle, J. C. and K. C. Creager, Topography of the 660-km seismic dis-continuity beneath Izu-Bonin: Implications for tectonic history and slab deformation, J. Geophys. Res., 1998 (in press).

  13. Chalmers, J. A., L. M. Larsen, and L. Pedersen, Widespread Paleocene volcanism around the northern Atlantic and Labrador Sea: evidence for a large, hot, early plume head, J. Geol. Soc., London, 152, 965–969, 1995.

    Article  Google Scholar 

  14. Chopelas, A. and R. Boehler, Thermal expansivity of the lower mantle, Geophys. Res. Lett., 19, 1983–1986, 1992.

    Article  Google Scholar 

  15. Christensen, U. R., The influence of trench migration on the slab penetration into the lower mantle, Earth Planet. Sci. Lett., 140, 27–39, 1996.

    Article  Google Scholar 

  16. Christensen, U. R. and D. A. Yuen, Layered convection induced by phase transitions, J. Geophys. Res., 90, 10,291–10,300, 1985.

    Article  Google Scholar 

  17. Cizkova, H. and O. Cadek, Effect of a viscosity interface at 1000 km depth on mantle convection, Studia geoph. et geod., 41, 297–306, 1997.

    Article  Google Scholar 

  18. Cserepes, L. and D. A. Yuen, Dynamical consequences of mid-mantle viscosity stratification on mantle flows with an endothermic transition, Geophys. Res. Lett., 24, 181–184, 1997.

    Article  Google Scholar 

  19. Cserepes, L. and D. A. Yuen, Mantle plumes developing in a second low viscosity zone below the 660 km discontinuity, A.G.U. abstract, Fall meeting, 1998.

  20. Cserepes, L., M. Rabinowicz, and C. Rosemberg-Borot, Three-dimensional infinite Prandtl number convection in one or two layers with implications for the Earth’s gravity field, J. Geophys. Res., 93, 12,009–12,025, 1988.

    Article  Google Scholar 

  21. Cserepes, L., D. A. Yuen, and B. A. Schroeder, Effects of the midmantle viscosity and phasetransition structure on 3-D mantle convection, Phys. Earth Planet. Inter., 1998 (submitted).

  22. Davies, G. F., Penetration of plates and plumes through the mantle transition zone, Earth Planet. Sci. Lett., 133, 507–516, 1995.

    Article  Google Scholar 

  23. Fitton, J. G., A. D. Saunders, M. J. Norry, B. S. Hardarson, and R. N. Taylor, Thermal and chemical structure of the Iceland plume, Earth Planet. Sci. Lett., 153, 197–208, 1997.

    Article  Google Scholar 

  24. Fornberg, B., High-order finite differences and the pseudospectral method on staggered grids, S.I.A.M., J. Numer. Anal., 27, 904–918, 1990.

    Article  Google Scholar 

  25. Forte, A. M., R. L. Woodward, and A. M. Dziewonski, Joint inversions of seismic and geodynamic data for models of three-dimensional mantle heterogeneity, J. Geophys. Res., 99, 21875–21897, 1994.

    Google Scholar 

  26. Garnero, E. J. and D. V. Helmberger, Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific, Geophys. Res. Lett., 23, 977–980, 1996.

    Article  Google Scholar 

  27. Griffiths, R. W. and I. H. Campbell, Stirring and structure in mantle starting plumes, Earth Planet. Sci. Lett., 99, 66–78, 1990.

    Article  Google Scholar 

  28. Griffiths, R. W., R. I. Hackney, and R. D. van der Hilst, A laboratory investigation of effects of trench migration on the descent of subducted slabs, Earth Planet. Sci. Lett., 133, 1–17, 1995.

    Article  Google Scholar 

  29. Guillou-Frottier, L., J. Buttles, and P. Olson, Laboratory experiments on the structure of subducted lithosphere, Earth Planet. Sci. Lett., 133, 19–34, 1995.

    Article  Google Scholar 

  30. Helmberger, D. V., L. Wen, and X. Ding, Seismic evidence that the source of the Iceland hotspot lies at the core-mantle boundary, Nature, 396, 251–255, 1998.

    Article  Google Scholar 

  31. Hofmann, A. W., Mantle geochemistry: the message from oceanic volcanism, Nature, 385, 219–229, 1997.

    Article  Google Scholar 

  32. Honda, S., D. A. Yuen, S. Balachandar, and D. Reuteler, Three-dimensional instabilities of mantle convection with multiple phase transitions, Science, 259, 1308–1311, 1993.

    Article  Google Scholar 

  33. Irifune, T., T. Koizumi, and J. Ando, An experimental study of the garnet-perovskite transformation in the system MgSiO3 -Mg3 Al2 Si3 O12, Phys. Earth Planet. Inter., 96, 147–157, 1996.

    Article  Google Scholar 

  34. Jarvis, G. T. and D. P. McKenzie, Convection in a compressible fluid with infinite Prandtl number, J. Fluid Mech., 96, 515–583, 1980.

    Article  Google Scholar 

  35. Karato, S., Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection, Pure Appl. Geophys., 151, 565–587, 1998.

    Article  Google Scholar 

  36. Kawakatsu, H. and F. Niu, Seismic evidence of a 920-km discontinuity in the mantle, Nature, 371, 301–305, 1994.

    Article  Google Scholar 

  37. Kesson, S. E., J. D. Fitz Gerald, J. M. G. Shelley, and R. L. Withers, Phase relations, structure and crystal chemistry of some aluminous silicate perovskites, Earth Planet. Sci. Lett., 134, 187–201, 1995.

    Article  Google Scholar 

  38. Kido, M. and O. Cadek, Inferences of viscosity from the oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity, Earth Planet. Sci. Lett., 151, 125–138, 1997.

    Article  Google Scholar 

  39. Kido, M., D. A. Yuen, O. Cadek, and T. Nakakuki, Mantle viscosity derived by genetic algorithm using oceanic geoid and seismic tomography for whole-mantle versus blocked-flow situation, Phys. Earth Planet. Inter., 107, 307–326, 1998.

    Article  Google Scholar 

  40. Larsen, T. B. and D. A. Yuen, Ultra-fast upwelling bursting through the upper mantle, Earth Planet. Sci. Lett., 146, 393–400, 1997.

    Article  Google Scholar 

  41. Larsen, T. B., D. A. Yuen, J. Moser, and B. Fornberg, A higher-order finite-difference method applied to large Rayleigh number mantle convection, Geophys. Astrophys. Fluid Dyn., 84, 53–83, 1997.

    Article  Google Scholar 

  42. Le Stunff, Y., C. W. Wicks, and B. Romanowicz, P’P’ precursors under Africa: evidence for mid-mantle reflectors, Science, 270, 74–77, 1995.

    Article  Google Scholar 

  43. Liu, M., D. A. Yuen, W. Zhao, and S. Honda, Development of diapiric structures in the upper mantle due to phase transitions, Science, 252, 1836–1839, 1991.

    Article  Google Scholar 

  44. Maruyama, S., Plume tectonics, J. Geol. Soc. Japan, 100, No. 1, 24–49, 1994.

    Article  Google Scholar 

  45. Montagner, J. P. and B. L. N. Kennett, How to reconcile body-wave and normal-mode reference earth models, Geophys. J. Int., 125, 229–248, 1996.

    Article  Google Scholar 

  46. Nakakuki, T., D. A. Yuen, and S. Honda, The interaction of plumes with the transition zone under continents and oceans, Earth Planet. Sci. Lett., 146, 379–392, 1997.

    Article  Google Scholar 

  47. Niu, F. and H. Kawakatsu, Depth variation of the mid-mantle seismic discontinuity, Geophys. Res. Lett., 24, 429–432, 1997.

    Article  Google Scholar 

  48. O’Neill, B. and R. Jeanloz, MgSiO3-FeSiO3-Al2 O3 in the Earth’s lower mantle: Perovskite and garnet at 1200 km depth, J. Geophys. Res., 99, 19,901–19,915, 1994.

    Article  Google Scholar 

  49. Obayashi, M., T. Sakurai, and Y. Fukao, The 3-D structure of the mantle from travel time inversion, J. Geography, 104, No. 7, 934–940, 1995 (in Japanese).

    Article  Google Scholar 

  50. Olbertz, D., M. J. R. Wortel, and U. Hansen, Trench migration and subduction zone geometry, Geophys. Res. Lett., 24, 221–224, 1997.

    Article  Google Scholar 

  51. Olson, P. L. and G. Corcos, A boundary layer model for mantle convection with surface plates, Geophys. J. R. astr. Soc., 62, 195–219, 1980.

    Article  Google Scholar 

  52. Quinn, K. J. and M. K. McNutt, Inversion of topography and geoid for mantle viscosity beneath the Pacific plate using genetic algorithms, J. Geophys. Res., 1998 (submitted).

  53. Ravine, M. A. and J. Phipps-Morgan, Inversion for radial mantle viscosity with a layered constraint: a better fit to dynamic topography?, EOS Trans. A.G.U., 77, No. 46, F721, 1996.

    Google Scholar 

  54. Ribe, N. M., On the relation between seismic anisotropy and finite strain, J. Geophys. Res., 97, 8737–8747, 1992.

    Article  Google Scholar 

  55. Riedel, M. R. and S. Karato, Grain-size evolution in subducted oceanic litho-sphere associated with the olivine-spinel transformation and its effects on rheology, Earth Planet. Sci. Lett., 148, 27–44, 1997.

    Article  Google Scholar 

  56. Ringwood, A. E., Phase transformations in descending plates: implications for mantle dynamics, basalt petrogenesis, and crustal evolution, J. Geology, 90, 611–643, 1982.

    Article  Google Scholar 

  57. Solheim, L. P. and W. R. Peltier, Avalanche effects in phase transition modulated thermal convection: A model of the Earth’s mantle, J. Geophys. Res., 99, 6997–7018, 1994.

    Article  Google Scholar 

  58. Stauffer, D. and A. Aharony, Introduction to Percolation Theory, Second Edition, Taylor and Francis, London, 1991.

    Google Scholar 

  59. Steinbach, V. and D. A. Yuen, Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions, Phys. Earth Planet. Inter., 86, 165–183, 1994.

    Article  Google Scholar 

  60. Steinbach, V. and D. A. Yuen, The influences of temperature- and pressure-dependent lower-mantle rheology on the interaction of upwellings with phase transitions, Phys. Earth Planet. Inter., 103, 85–100, 1997.

    Article  Google Scholar 

  61. Steinbach, V. and D. A. Yuen, The influences of surface temperature on upwellings in planetary convection with phase transitions, Earth Planet. Sci. Lett., 160, 1998.

  62. Steinbach, V., U. Hansen, and A. Ebel, Compressible convection in the earth’s mantle: a comparison of different approaches, Geophys. Res. Lett., 16, 633–635, 1989.

    Article  Google Scholar 

  63. Steinbach, V., D. A. Yuen, and W. Zhao, Instabilities from phase transitions and the timescales of mantle evolution, Geophys. Res. Lett., 20, 1119–1122, 1993.

    Article  Google Scholar 

  64. Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of an endothermic phase transition at 670 km depth on spherical mantle convection, Nature, 361, 699–704, 1993.

    Article  Google Scholar 

  65. Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of multiple phase transitions in a three dimensional spherical model of convection in Earth’s mantle, J. Geophys. Res., 99, 15,877–15,902, 1994.

    Article  Google Scholar 

  66. Thompson, P. F. and P. J. Tackley, Generation of mega-plumes from the core-mantle boundary in a compressible mantle with temperature-dependent viscosity, Geophys. Res. Lett., 25, 1999–2002, 1998.

    Article  Google Scholar 

  67. Travis, B., P. Olson, and G. Schubert, The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection, J. Fluid Mech., 216, 71–91, 1990.

    Article  Google Scholar 

  68. Tschauner, O., Stabilitaet und chemische Eigenschaften von Ni, Co: (Mg, Fe)SiO3 -Perowskit, Ph.D. Thesis, Univ. Mainz, 1997.

  69. Tschauner, O., A. Zerr, S. Specht, R. Boehler, and H. Palme, Partitioning of nickel and cobalt between metal and silicate perovskite up to 80 GPa, Nature, 1998 (in press).

  70. van Keken, P. E. and D. A. Yuen, Dynamical influences of high viscosity in the lower mantle induced by the steep melting curve of perovskite: Effects of curvature and time dependence, J. Geophys. Res., 100, B8, 15,233–15,248, 1995.

    Article  Google Scholar 

  71. van Keken, P. E., D. A. Yuen, and A. P. van den Berg, Pulsating diapiric flows: consequences of vertical variations of mantle creep laws, Earth Planet. Sci. Lett., 112, 179–194, 1992.

    Article  Google Scholar 

  72. Vinnik, L., S. Chevrot, and J.-P. Montagner, Evidence for a stagnant plume in the transition zone, Geophys. Res. Lett., 24, 1007–1010, 1997.

    Article  Google Scholar 

  73. Wen, L. and D. V. Helmberger, Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors, Science, 279, 1701–1703, 1998.

    Article  Google Scholar 

  74. White, R. and D. P. McKenzie, Magmatism in rift zones: the generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729, 1989.

    Article  Google Scholar 

  75. Widiyantoro, S., Studies of seismic tomography on regional and global scale, Australian National University, 246 pp., 1997.

  76. Widiyantoro, S. and R. D. van der Hilst, Structure and evolution of litho-spheric slab beneath the Sunda Arc, Science, 271, 1566–1570, 1996.

    Article  Google Scholar 

  77. Yuen, D. A., D. M. Reuteler, S. Balachandar, V. Steinbach, A. V. Malevsky, and J. L. Smedsmo, Various influences on three-dimensional mantle convection with phase transitions, Phys. Earth Planet. Inter., 86, 185–203, 1994a.

    Article  Google Scholar 

  78. Yuen, D. A., O. P. Cadek, R. Boehler, J. Moser, and C. Matyska, Large cold anomalies in the deep mantle and mantle instability in the Cretaceous, Terra Nova, 6, 238–245, 1994b.

    Article  Google Scholar 

  79. Zhang, S. and D. A. Yuen, Various influences on plumes and dynamics in time-dependent, compressible, mantle convection in 3-D spherical shell, Phys. Earth Planet. Inter., 94, 241–267, 1996.

    Article  Google Scholar 

  80. Zhou, H.-W., A high-resolution P wave model for the top 1200 km of the mantle, J. Geophys. Res., 101, 27,791–27,810, 1996.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David A. Yuen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuen, D.A., Cserepes, L. & Schroeder, B.A. Mesoscale structures in the transition zone: Dynamical consequences of boundary layer activities. Earth Planet Sp 50, 1035–1045 (1998). https://doi.org/10.1186/BF03352198

Download citation

Keywords

  • Rayleigh Number
  • Asthenosphere
  • Lower Mantle
  • Mantle Convection
  • Seismic Anisotropy