Skip to main content


Mesoscale structures in the transition zone: Dynamical consequences of boundary layer activities

Article metrics

  • 251 Accesses

  • 20 Citations


Recent geophysical evidence from seismology, mineral physics, viscosity inversion shows that the mantle between 400 and 1000 km is extremely complicated, with intermediate scale structures present regionally as seismic reflectors under the 660 km discontinuity and bent plume-like structures under the transition zone. We have studied the dynamics of the transition zone with two models, an axisymmetric spherical-shell (2-D) model with a horizontally averaged temperature- and pressure-dependent viscosity and a 3-D Cartesian model with a depth-dependent viscosity. Two mantle phase transitions have been employed in both models. Results of the 2-D axisymmetric model show that the interaction of the lower mantle plumes with the transition zone can result in a horizontal channel flow right underneath the 660 km and in the birth of secondary plume some distance away from the lower mantle plume. The strength of the secondary plume increases in strength with larger viscosity contrast across the 660 km discontinuity. In the 3-D model we have found that with the presence of a second low viscosity zone somewhere between 660 and 1000 km, many secondary instabilities are developed in the second asthenosphere and the mesoscale thermal structure developed can become quite complex. Many small-scale plumes can emanate from the transition zone. Occasionally a very large plume burst, with a near-surface radius exceeding 1000 km, can develop from the hot lower-mantle material trapped in the second asthenosphere. Both the viscosity and the phase transition structure between 660 km and 1000 km can exert a significant influence on the plume distribution and cause singular plume eruption events in the upper mantle. Plume instabilities originating below the 660 km discontinuity in the western Pacific might have launched a large hot upwelling into the upper mantle, thus precipitating the massive flood basalt volcanism in the Ontong-Java region.


  1. Allegre, C. J., Limitation on the mass exchange between the upper and lower mantle: the evolving convection regime of the Earth, Earth Planet. Sci. Lett., 150, 1–6, 1997.

  2. Allegre, C. J. and D. L. Turcotte, Geodynamic mixing in the meso-sphere boundary layer and the origin of oceanic islands, Geophys. Res. Lett., 12, 207–210, 1985.

  3. Bercovici, D. and J. Mahoney, Double flood basalts and plume head separation at the 660-kilometer discontinuity, Science, 266, 1367–1369, 1994.

  4. Bijwaard, H. and W. Spakman, Tomographic evidence for a narrow whole mantle plume below Iceland, Earth Planet. Sci. Lett., 1998 (in press).

  5. Bijwaard, H., W. Spakman, and E. R. Engdahl, Closing the gap between regional and global travel time tomography, J. Geophys. Res., 1998 (in press).

  6. Birch, F., The earth’s mantle: elasticity and constitution, Trans. Am. Geophys. Union, 35, 79–85, 1954.

  7. Breuer, D. and T. Spohn, Possible flush instability in mantle convection at the Archaean-Proterozoic transition, Nature, 378, 608–610, 1995.

  8. Breuer, D., D. A. Yuen, and T. Spohn, Phase transitions in the Martian mantle: Implications for partially layered convection, Earth Planet. Sci. Lett., 148, 457–469, 1997.

  9. Brunet, D. and P. Machetel, Large-scale tectonic features induced by mantle avalanches with phase, temperature and pressure lateral variation of viscosity, J. Geophys. Res., 103, 4929–4945, 1998.

  10. Bunge, H.-P. and M. A. Richards, The origin of large scale structure in mantle convection: effects of plate motions and viscosity stratification, Geophys. Res. Lett., 23, 2987–2990, 1996.

  11. Cadek, O., H. Ciskova, and D. A. Yuen, Can long-wavelength dynamical signatures be compatible with layered convection?, Geophys. Res. Lett., 24, 2091–2094, 1997.

  12. Castle, J. C. and K. C. Creager, Topography of the 660-km seismic dis-continuity beneath Izu-Bonin: Implications for tectonic history and slab deformation, J. Geophys. Res., 1998 (in press).

  13. Chalmers, J. A., L. M. Larsen, and L. Pedersen, Widespread Paleocene volcanism around the northern Atlantic and Labrador Sea: evidence for a large, hot, early plume head, J. Geol. Soc., London, 152, 965–969, 1995.

  14. Chopelas, A. and R. Boehler, Thermal expansivity of the lower mantle, Geophys. Res. Lett., 19, 1983–1986, 1992.

  15. Christensen, U. R., The influence of trench migration on the slab penetration into the lower mantle, Earth Planet. Sci. Lett., 140, 27–39, 1996.

  16. Christensen, U. R. and D. A. Yuen, Layered convection induced by phase transitions, J. Geophys. Res., 90, 10,291–10,300, 1985.

  17. Cizkova, H. and O. Cadek, Effect of a viscosity interface at 1000 km depth on mantle convection, Studia geoph. et geod., 41, 297–306, 1997.

  18. Cserepes, L. and D. A. Yuen, Dynamical consequences of mid-mantle viscosity stratification on mantle flows with an endothermic transition, Geophys. Res. Lett., 24, 181–184, 1997.

  19. Cserepes, L. and D. A. Yuen, Mantle plumes developing in a second low viscosity zone below the 660 km discontinuity, A.G.U. abstract, Fall meeting, 1998.

  20. Cserepes, L., M. Rabinowicz, and C. Rosemberg-Borot, Three-dimensional infinite Prandtl number convection in one or two layers with implications for the Earth’s gravity field, J. Geophys. Res., 93, 12,009–12,025, 1988.

  21. Cserepes, L., D. A. Yuen, and B. A. Schroeder, Effects of the midmantle viscosity and phasetransition structure on 3-D mantle convection, Phys. Earth Planet. Inter., 1998 (submitted).

  22. Davies, G. F., Penetration of plates and plumes through the mantle transition zone, Earth Planet. Sci. Lett., 133, 507–516, 1995.

  23. Fitton, J. G., A. D. Saunders, M. J. Norry, B. S. Hardarson, and R. N. Taylor, Thermal and chemical structure of the Iceland plume, Earth Planet. Sci. Lett., 153, 197–208, 1997.

  24. Fornberg, B., High-order finite differences and the pseudospectral method on staggered grids, S.I.A.M., J. Numer. Anal., 27, 904–918, 1990.

  25. Forte, A. M., R. L. Woodward, and A. M. Dziewonski, Joint inversions of seismic and geodynamic data for models of three-dimensional mantle heterogeneity, J. Geophys. Res., 99, 21875–21897, 1994.

  26. Garnero, E. J. and D. V. Helmberger, Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific, Geophys. Res. Lett., 23, 977–980, 1996.

  27. Griffiths, R. W. and I. H. Campbell, Stirring and structure in mantle starting plumes, Earth Planet. Sci. Lett., 99, 66–78, 1990.

  28. Griffiths, R. W., R. I. Hackney, and R. D. van der Hilst, A laboratory investigation of effects of trench migration on the descent of subducted slabs, Earth Planet. Sci. Lett., 133, 1–17, 1995.

  29. Guillou-Frottier, L., J. Buttles, and P. Olson, Laboratory experiments on the structure of subducted lithosphere, Earth Planet. Sci. Lett., 133, 19–34, 1995.

  30. Helmberger, D. V., L. Wen, and X. Ding, Seismic evidence that the source of the Iceland hotspot lies at the core-mantle boundary, Nature, 396, 251–255, 1998.

  31. Hofmann, A. W., Mantle geochemistry: the message from oceanic volcanism, Nature, 385, 219–229, 1997.

  32. Honda, S., D. A. Yuen, S. Balachandar, and D. Reuteler, Three-dimensional instabilities of mantle convection with multiple phase transitions, Science, 259, 1308–1311, 1993.

  33. Irifune, T., T. Koizumi, and J. Ando, An experimental study of the garnet-perovskite transformation in the system MgSiO3 -Mg3 Al2 Si3 O12, Phys. Earth Planet. Inter., 96, 147–157, 1996.

  34. Jarvis, G. T. and D. P. McKenzie, Convection in a compressible fluid with infinite Prandtl number, J. Fluid Mech., 96, 515–583, 1980.

  35. Karato, S., Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection, Pure Appl. Geophys., 151, 565–587, 1998.

  36. Kawakatsu, H. and F. Niu, Seismic evidence of a 920-km discontinuity in the mantle, Nature, 371, 301–305, 1994.

  37. Kesson, S. E., J. D. Fitz Gerald, J. M. G. Shelley, and R. L. Withers, Phase relations, structure and crystal chemistry of some aluminous silicate perovskites, Earth Planet. Sci. Lett., 134, 187–201, 1995.

  38. Kido, M. and O. Cadek, Inferences of viscosity from the oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity, Earth Planet. Sci. Lett., 151, 125–138, 1997.

  39. Kido, M., D. A. Yuen, O. Cadek, and T. Nakakuki, Mantle viscosity derived by genetic algorithm using oceanic geoid and seismic tomography for whole-mantle versus blocked-flow situation, Phys. Earth Planet. Inter., 107, 307–326, 1998.

  40. Larsen, T. B. and D. A. Yuen, Ultra-fast upwelling bursting through the upper mantle, Earth Planet. Sci. Lett., 146, 393–400, 1997.

  41. Larsen, T. B., D. A. Yuen, J. Moser, and B. Fornberg, A higher-order finite-difference method applied to large Rayleigh number mantle convection, Geophys. Astrophys. Fluid Dyn., 84, 53–83, 1997.

  42. Le Stunff, Y., C. W. Wicks, and B. Romanowicz, P’P’ precursors under Africa: evidence for mid-mantle reflectors, Science, 270, 74–77, 1995.

  43. Liu, M., D. A. Yuen, W. Zhao, and S. Honda, Development of diapiric structures in the upper mantle due to phase transitions, Science, 252, 1836–1839, 1991.

  44. Maruyama, S., Plume tectonics, J. Geol. Soc. Japan, 100, No. 1, 24–49, 1994.

  45. Montagner, J. P. and B. L. N. Kennett, How to reconcile body-wave and normal-mode reference earth models, Geophys. J. Int., 125, 229–248, 1996.

  46. Nakakuki, T., D. A. Yuen, and S. Honda, The interaction of plumes with the transition zone under continents and oceans, Earth Planet. Sci. Lett., 146, 379–392, 1997.

  47. Niu, F. and H. Kawakatsu, Depth variation of the mid-mantle seismic discontinuity, Geophys. Res. Lett., 24, 429–432, 1997.

  48. O’Neill, B. and R. Jeanloz, MgSiO3-FeSiO3-Al2 O3 in the Earth’s lower mantle: Perovskite and garnet at 1200 km depth, J. Geophys. Res., 99, 19,901–19,915, 1994.

  49. Obayashi, M., T. Sakurai, and Y. Fukao, The 3-D structure of the mantle from travel time inversion, J. Geography, 104, No. 7, 934–940, 1995 (in Japanese).

  50. Olbertz, D., M. J. R. Wortel, and U. Hansen, Trench migration and subduction zone geometry, Geophys. Res. Lett., 24, 221–224, 1997.

  51. Olson, P. L. and G. Corcos, A boundary layer model for mantle convection with surface plates, Geophys. J. R. astr. Soc., 62, 195–219, 1980.

  52. Quinn, K. J. and M. K. McNutt, Inversion of topography and geoid for mantle viscosity beneath the Pacific plate using genetic algorithms, J. Geophys. Res., 1998 (submitted).

  53. Ravine, M. A. and J. Phipps-Morgan, Inversion for radial mantle viscosity with a layered constraint: a better fit to dynamic topography?, EOS Trans. A.G.U., 77, No. 46, F721, 1996.

  54. Ribe, N. M., On the relation between seismic anisotropy and finite strain, J. Geophys. Res., 97, 8737–8747, 1992.

  55. Riedel, M. R. and S. Karato, Grain-size evolution in subducted oceanic litho-sphere associated with the olivine-spinel transformation and its effects on rheology, Earth Planet. Sci. Lett., 148, 27–44, 1997.

  56. Ringwood, A. E., Phase transformations in descending plates: implications for mantle dynamics, basalt petrogenesis, and crustal evolution, J. Geology, 90, 611–643, 1982.

  57. Solheim, L. P. and W. R. Peltier, Avalanche effects in phase transition modulated thermal convection: A model of the Earth’s mantle, J. Geophys. Res., 99, 6997–7018, 1994.

  58. Stauffer, D. and A. Aharony, Introduction to Percolation Theory, Second Edition, Taylor and Francis, London, 1991.

  59. Steinbach, V. and D. A. Yuen, Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions, Phys. Earth Planet. Inter., 86, 165–183, 1994.

  60. Steinbach, V. and D. A. Yuen, The influences of temperature- and pressure-dependent lower-mantle rheology on the interaction of upwellings with phase transitions, Phys. Earth Planet. Inter., 103, 85–100, 1997.

  61. Steinbach, V. and D. A. Yuen, The influences of surface temperature on upwellings in planetary convection with phase transitions, Earth Planet. Sci. Lett., 160, 1998.

  62. Steinbach, V., U. Hansen, and A. Ebel, Compressible convection in the earth’s mantle: a comparison of different approaches, Geophys. Res. Lett., 16, 633–635, 1989.

  63. Steinbach, V., D. A. Yuen, and W. Zhao, Instabilities from phase transitions and the timescales of mantle evolution, Geophys. Res. Lett., 20, 1119–1122, 1993.

  64. Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of an endothermic phase transition at 670 km depth on spherical mantle convection, Nature, 361, 699–704, 1993.

  65. Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of multiple phase transitions in a three dimensional spherical model of convection in Earth’s mantle, J. Geophys. Res., 99, 15,877–15,902, 1994.

  66. Thompson, P. F. and P. J. Tackley, Generation of mega-plumes from the core-mantle boundary in a compressible mantle with temperature-dependent viscosity, Geophys. Res. Lett., 25, 1999–2002, 1998.

  67. Travis, B., P. Olson, and G. Schubert, The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection, J. Fluid Mech., 216, 71–91, 1990.

  68. Tschauner, O., Stabilitaet und chemische Eigenschaften von Ni, Co: (Mg, Fe)SiO3 -Perowskit, Ph.D. Thesis, Univ. Mainz, 1997.

  69. Tschauner, O., A. Zerr, S. Specht, R. Boehler, and H. Palme, Partitioning of nickel and cobalt between metal and silicate perovskite up to 80 GPa, Nature, 1998 (in press).

  70. van Keken, P. E. and D. A. Yuen, Dynamical influences of high viscosity in the lower mantle induced by the steep melting curve of perovskite: Effects of curvature and time dependence, J. Geophys. Res., 100, B8, 15,233–15,248, 1995.

  71. van Keken, P. E., D. A. Yuen, and A. P. van den Berg, Pulsating diapiric flows: consequences of vertical variations of mantle creep laws, Earth Planet. Sci. Lett., 112, 179–194, 1992.

  72. Vinnik, L., S. Chevrot, and J.-P. Montagner, Evidence for a stagnant plume in the transition zone, Geophys. Res. Lett., 24, 1007–1010, 1997.

  73. Wen, L. and D. V. Helmberger, Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors, Science, 279, 1701–1703, 1998.

  74. White, R. and D. P. McKenzie, Magmatism in rift zones: the generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729, 1989.

  75. Widiyantoro, S., Studies of seismic tomography on regional and global scale, Australian National University, 246 pp., 1997.

  76. Widiyantoro, S. and R. D. van der Hilst, Structure and evolution of litho-spheric slab beneath the Sunda Arc, Science, 271, 1566–1570, 1996.

  77. Yuen, D. A., D. M. Reuteler, S. Balachandar, V. Steinbach, A. V. Malevsky, and J. L. Smedsmo, Various influences on three-dimensional mantle convection with phase transitions, Phys. Earth Planet. Inter., 86, 185–203, 1994a.

  78. Yuen, D. A., O. P. Cadek, R. Boehler, J. Moser, and C. Matyska, Large cold anomalies in the deep mantle and mantle instability in the Cretaceous, Terra Nova, 6, 238–245, 1994b.

  79. Zhang, S. and D. A. Yuen, Various influences on plumes and dynamics in time-dependent, compressible, mantle convection in 3-D spherical shell, Phys. Earth Planet. Inter., 94, 241–267, 1996.

  80. Zhou, H.-W., A high-resolution P wave model for the top 1200 km of the mantle, J. Geophys. Res., 101, 27,791–27,810, 1996.

Download references

Author information

Correspondence to David A. Yuen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuen, D.A., Cserepes, L. & Schroeder, B.A. Mesoscale structures in the transition zone: Dynamical consequences of boundary layer activities. Earth Planet Sp 50, 1035–1045 (1998) doi:10.1186/BF03352198

Download citation


  • Rayleigh Number
  • Asthenosphere
  • Lower Mantle
  • Mantle Convection
  • Seismic Anisotropy