Skip to main content

Influence of ionospheric conductivity on mid-latitude Pc 3–4 pulsations

Abstract

Diurnal variations of the parameters of the magnetospheric Alfvén resonator at different latitudes have been calculated using a semi-empirical model of the ionosphere-magnetosphere plasma distribution. The ionospheric plasma density is taken from the IRI model, the electron density at the magnetospheric equator is based on the ISEE/whistler model, and the field-aligned magnetospheric plasma distribution is calculated under the assumption of diffusive equilibrium. It is shown that for the mid-latitude ionosphere the Hall conductivity has no effect on the parameters of the magnetospheric Alfvén resonator. The calculated values of damping rates of Alfvén oscillations at middle latitudes during the dark period are too high for the “free-end” and “quarter-wave” oscillation regimes to be realized. At low latitudes quality factors are relatively high both at daytime and nighttime conditions. An expected change of a field-aligned structure of Alfvén oscillations during the transition from dayside to nightside ionospheric conditions does not occur. The analysis of the experimental data recorded at middle and low latitude stations of the “210° Magnetic Meridian” magnetometer network and station l’Aquila gives the results, compatible with the predictions of the numerical model: (a) the pulsation amplitude in a frequency band near the fundamental harmonic of the Alfvén field line resonance has the strongest dependence on the ionospheric conductivity; (b) the influence of day/night ionospheric conditions on the Pc 3 amplitudes is less at low (L ≤ 2) geomagnetic latitudes than at middle latitudes; (c) the ionospheric conductivity control of the Pc 3 amplitude at middle latitudes weakens with increasing harmonic number.

References

  • Allan, W., Quarter-wave ULF pulsations, Planet. Space Sci., 31, 323–330, 1983.

    Article  Google Scholar 

  • Allan, W. and F. B. Knox, The effect of finite ionosphere conductivities on axisymmetric toroidal Alfvén wave resonances, Planet. Space Sci., 27, 939–950, 1979.

    Article  Google Scholar 

  • Alperovich, L. S. and E. N. Fedorov, On hydromagnetic wave beams propagation through the ionosphere, Ann. Geophys., 10, 647–654, 1992.

    Google Scholar 

  • Angerami, J. J. and J. O. Thomas, The distribution of electrons and ions in the Earth’s exosphere, J. Geophys. Res., 69, 4537–4560, 1964.

    Article  Google Scholar 

  • Baransky, L. N., A. W. Green, E. N. Fedorov, N. A. Kurneva, V. A. Pilipenko, and W. Worthington, Gradient and polarization methods of ground-based monitoring of magnetospheric plasma, J. Geomag. Geoelectr., 47, 1293–1309, 1995.

    Article  Google Scholar 

  • Bilitza, D., Solar-terrestrial models and application software, Planet. Space Sci., 40, 541–579, 1992.

    Article  Google Scholar 

  • Carpenter, D. L. and R. R. Anderson, An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97A, 1097–1108, 1992.

    Article  Google Scholar 

  • Glassmeier, K.-H., On the influence of ionospheres with non-uniform conductivity distribution on hydromagnetic waves, J. Geophys., 54, 125, 1984.

    Google Scholar 

  • Gugliel’mi, A. V., Coefficient of relationship between Pc 3 frequency and IMF magnitude, Geomagn. Aeron., 28, No. 3, 465, 1988.

    Google Scholar 

  • Hameiri, E. and M. G. Kivelson, Magnetospheric waves and the atmosphere-ionosphere layer, J. Geophys. Res., 96A, 21125–21134, 1991.

    Article  Google Scholar 

  • Hughes, W. J. and D. J. Southwood, The screening of micropulsation signals by the atmosphere and ionosphere, J. Geophys. Res., 81, No. 19, 3234–3240, 1976.

    Article  Google Scholar 

  • Itonaga, K. and T. Kitamura, Effect of non-uniform ionospheric conductivity distributions on Pc 3–5 magnetic pulsations-Alfvén wave incidence, J. Geomag. Geoelectr., 40, 1413–1435, 1988.

    Article  Google Scholar 

  • Lyatsky, V. B. and Yu. P. Maltsev, Interaction between Magnetosphere and Ionosphere, 192pp., Nauka, Moscow, 1983 (in Russian).

  • Newton, R. S., D. J. Southwood, and W. J. Hughes, Damping of geomagnetic pulsations by the ionosphere, Planet. Space Sci., 26, 201–209, 1978.

    Article  Google Scholar 

  • Pilipenko, V. A. and E. N. Fedorov, Magnetotelluric sounding of the crust and hydromagnetic monitoring of the magnetosphere with the use of ULF waves, in Solar Wind Sources of Magnetospheric ULF Waves, edited by M. Engebretson, K. Takahashi, and M. Scholer, pp. 283–292, Geophysical Monograph, v. 81, AGU, 1994.

  • Pilipenko, V. A., E. N. Fedorov, N. V. Yagova, S. I. Solovyev, E. F. Vershinin, and K. Yumoto, Variations of spectral content of Pc 3–4 pulsations along geomagnetic meridian 210°, Geomagn. Aeron., 37, No. 1, 80, 1997.

    Google Scholar 

  • Pilipenko, V., K. Yumoto, E. Fedorov, N. Kurneva, and F. Menk, Field line Alfvén oscillations at low latitudes, Memoirs of Kyushu University, series D, 30, No. 1, 23–43, 1998.

    Google Scholar 

  • Polyakov, S. V., Magnetospheric Alfvén resonance in a case of horizontally-inhomogeneous ionosphere, Geomagn. Aeron., 28, 587, 1988.

    Google Scholar 

  • Poulter, E. M., W. Allan, and G. J. Bailey, ULF pulsation eigenperiods within the plasmasphere, Planet. Space Sci., 36, 185–196, 1988.

    Article  Google Scholar 

  • Saka, O., M. Itonaga, and T. Kitamura, Ionospheric control of polarization of low-latitude geomagnetic micropulsations at sunrise, J. Atmos. Terr. Phys., 44, 703–712, 1982.

    Article  Google Scholar 

  • Strangeways, H. J., A model for the electron temperature variation along geomagnetic fiel lines and its effect on electron density profiles and VLF paths, J. Atmos. Terr. Phys., 48, 671–683, 1986.

    Article  Google Scholar 

  • Vellante, M., U. Villante, M. De Lauretis, and F. Cerulli-Irelli, An analysis of micropulsation events at a low-latitude station during 1985, Planet. Space Sci., 37, No. 7, 767–773, 1989.

    Article  Google Scholar 

  • Vellante, M., U. Villante, M. De Lauretis, and G. Barchi, Solar-cycle variation of the dominant frequencies of Pc 3 geomagnetic pulsations at L = 1.6, Geophys. Res. Lett., 23, 1505–1508, 1996.

    Article  Google Scholar 

  • Waters, C. L., F. V. Menk, and B. J. Fraser, The resonance structure of low latitude Pc 3 geomagnetic pulsations, Geophys. Res. Lett., 18, 2293–2296, 1991.

    Article  Google Scholar 

  • Yoshikawa, A. and M. Itonaga, Reflection of shear Alfvén waves at the ionosphere and the divergent Hall current, Geophys. Res. Lett., 23, 101–104, 1996.

    Article  Google Scholar 

  • Yumoto, K. and 210° MM Observation Group, Globally coordinated magnetic observations along 210° magnetic meridian during STEP period, J. Geomag. Geoelectr., 44, 261–276, 1992.

    Article  Google Scholar 

  • Yumoto, K., V. Pilipenko, E. Fedorov, N. Kurneva, and K. Shiokawa, The mechanisms of damping of geomagnetic pulsations, J. Geomag. Geoelectr., 47, 163–176, 1995.

    Article  Google Scholar 

  • Yumoto, K. and the 210° MM Magnetic Observation Group, The STEP 210° magnetic meridian network project, J. Geomag. Geoelectr., 48, 1297–1309, 1996.

    Article  Google Scholar 

  • Ziesolleck, C. W. S., B. J. Fraser, F. W. Menk, and P. W. McNabb, Spatial characteristics of low-latitude Pc 3–4 geomagnetic pulsations, J. Geophys. Res., 98A, 197–207, 1993.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yagova, N., Pilipenko, V., Fedorov, E. et al. Influence of ionospheric conductivity on mid-latitude Pc 3–4 pulsations. Earth Planet Sp 51, 129–138 (1999). https://doi.org/10.1186/BF03352217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352217

Keywords

  • Diurnal Variation
  • Middle Latitude
  • Hall Current
  • Hall Conductivity
  • Geomagnetic Pulsation