Skip to main content

Advertisement

You are viewing the new article page. Let us know what you think. Return to old version

Article | Open | Published:

Influence of ionospheric conductivity on mid-latitude Pc 3–4 pulsations

Abstract

Diurnal variations of the parameters of the magnetospheric Alfvén resonator at different latitudes have been calculated using a semi-empirical model of the ionosphere-magnetosphere plasma distribution. The ionospheric plasma density is taken from the IRI model, the electron density at the magnetospheric equator is based on the ISEE/whistler model, and the field-aligned magnetospheric plasma distribution is calculated under the assumption of diffusive equilibrium. It is shown that for the mid-latitude ionosphere the Hall conductivity has no effect on the parameters of the magnetospheric Alfvén resonator. The calculated values of damping rates of Alfvén oscillations at middle latitudes during the dark period are too high for the “free-end” and “quarter-wave” oscillation regimes to be realized. At low latitudes quality factors are relatively high both at daytime and nighttime conditions. An expected change of a field-aligned structure of Alfvén oscillations during the transition from dayside to nightside ionospheric conditions does not occur. The analysis of the experimental data recorded at middle and low latitude stations of the “210° Magnetic Meridian” magnetometer network and station l’Aquila gives the results, compatible with the predictions of the numerical model: (a) the pulsation amplitude in a frequency band near the fundamental harmonic of the Alfvén field line resonance has the strongest dependence on the ionospheric conductivity; (b) the influence of day/night ionospheric conditions on the Pc 3 amplitudes is less at low (L ≤ 2) geomagnetic latitudes than at middle latitudes; (c) the ionospheric conductivity control of the Pc 3 amplitude at middle latitudes weakens with increasing harmonic number.

References

  1. Allan, W., Quarter-wave ULF pulsations, Planet. Space Sci., 31, 323–330, 1983.

  2. Allan, W. and F. B. Knox, The effect of finite ionosphere conductivities on axisymmetric toroidal Alfvén wave resonances, Planet. Space Sci., 27, 939–950, 1979.

  3. Alperovich, L. S. and E. N. Fedorov, On hydromagnetic wave beams propagation through the ionosphere, Ann. Geophys., 10, 647–654, 1992.

  4. Angerami, J. J. and J. O. Thomas, The distribution of electrons and ions in the Earth’s exosphere, J. Geophys. Res., 69, 4537–4560, 1964.

  5. Baransky, L. N., A. W. Green, E. N. Fedorov, N. A. Kurneva, V. A. Pilipenko, and W. Worthington, Gradient and polarization methods of ground-based monitoring of magnetospheric plasma, J. Geomag. Geoelectr., 47, 1293–1309, 1995.

  6. Bilitza, D., Solar-terrestrial models and application software, Planet. Space Sci., 40, 541–579, 1992.

  7. Carpenter, D. L. and R. R. Anderson, An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97A, 1097–1108, 1992.

  8. Glassmeier, K.-H., On the influence of ionospheres with non-uniform conductivity distribution on hydromagnetic waves, J. Geophys., 54, 125, 1984.

  9. Gugliel’mi, A. V., Coefficient of relationship between Pc 3 frequency and IMF magnitude, Geomagn. Aeron., 28, No. 3, 465, 1988.

  10. Hameiri, E. and M. G. Kivelson, Magnetospheric waves and the atmosphere-ionosphere layer, J. Geophys. Res., 96A, 21125–21134, 1991.

  11. Hughes, W. J. and D. J. Southwood, The screening of micropulsation signals by the atmosphere and ionosphere, J. Geophys. Res., 81, No. 19, 3234–3240, 1976.

  12. Itonaga, K. and T. Kitamura, Effect of non-uniform ionospheric conductivity distributions on Pc 3–5 magnetic pulsations-Alfvén wave incidence, J. Geomag. Geoelectr., 40, 1413–1435, 1988.

  13. Lyatsky, V. B. and Yu. P. Maltsev, Interaction between Magnetosphere and Ionosphere, 192pp., Nauka, Moscow, 1983 (in Russian).

  14. Newton, R. S., D. J. Southwood, and W. J. Hughes, Damping of geomagnetic pulsations by the ionosphere, Planet. Space Sci., 26, 201–209, 1978.

  15. Pilipenko, V. A. and E. N. Fedorov, Magnetotelluric sounding of the crust and hydromagnetic monitoring of the magnetosphere with the use of ULF waves, in Solar Wind Sources of Magnetospheric ULF Waves, edited by M. Engebretson, K. Takahashi, and M. Scholer, pp. 283–292, Geophysical Monograph, v. 81, AGU, 1994.

  16. Pilipenko, V. A., E. N. Fedorov, N. V. Yagova, S. I. Solovyev, E. F. Vershinin, and K. Yumoto, Variations of spectral content of Pc 3–4 pulsations along geomagnetic meridian 210°, Geomagn. Aeron., 37, No. 1, 80, 1997.

  17. Pilipenko, V., K. Yumoto, E. Fedorov, N. Kurneva, and F. Menk, Field line Alfvén oscillations at low latitudes, Memoirs of Kyushu University, series D, 30, No. 1, 23–43, 1998.

  18. Polyakov, S. V., Magnetospheric Alfvén resonance in a case of horizontally-inhomogeneous ionosphere, Geomagn. Aeron., 28, 587, 1988.

  19. Poulter, E. M., W. Allan, and G. J. Bailey, ULF pulsation eigenperiods within the plasmasphere, Planet. Space Sci., 36, 185–196, 1988.

  20. Saka, O., M. Itonaga, and T. Kitamura, Ionospheric control of polarization of low-latitude geomagnetic micropulsations at sunrise, J. Atmos. Terr. Phys., 44, 703–712, 1982.

  21. Strangeways, H. J., A model for the electron temperature variation along geomagnetic fiel lines and its effect on electron density profiles and VLF paths, J. Atmos. Terr. Phys., 48, 671–683, 1986.

  22. Vellante, M., U. Villante, M. De Lauretis, and F. Cerulli-Irelli, An analysis of micropulsation events at a low-latitude station during 1985, Planet. Space Sci., 37, No. 7, 767–773, 1989.

  23. Vellante, M., U. Villante, M. De Lauretis, and G. Barchi, Solar-cycle variation of the dominant frequencies of Pc 3 geomagnetic pulsations at L = 1.6, Geophys. Res. Lett., 23, 1505–1508, 1996.

  24. Waters, C. L., F. V. Menk, and B. J. Fraser, The resonance structure of low latitude Pc 3 geomagnetic pulsations, Geophys. Res. Lett., 18, 2293–2296, 1991.

  25. Yoshikawa, A. and M. Itonaga, Reflection of shear Alfvén waves at the ionosphere and the divergent Hall current, Geophys. Res. Lett., 23, 101–104, 1996.

  26. Yumoto, K. and 210° MM Observation Group, Globally coordinated magnetic observations along 210° magnetic meridian during STEP period, J. Geomag. Geoelectr., 44, 261–276, 1992.

  27. Yumoto, K., V. Pilipenko, E. Fedorov, N. Kurneva, and K. Shiokawa, The mechanisms of damping of geomagnetic pulsations, J. Geomag. Geoelectr., 47, 163–176, 1995.

  28. Yumoto, K. and the 210° MM Magnetic Observation Group, The STEP 210° magnetic meridian network project, J. Geomag. Geoelectr., 48, 1297–1309, 1996.

  29. Ziesolleck, C. W. S., B. J. Fraser, F. W. Menk, and P. W. McNabb, Spatial characteristics of low-latitude Pc 3–4 geomagnetic pulsations, J. Geophys. Res., 98A, 197–207, 1993.

Download references

Author information

Correspondence to N. Yagova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Keywords

  • Diurnal Variation
  • Middle Latitude
  • Hall Current
  • Hall Conductivity
  • Geomagnetic Pulsation