Skip to main content

Three-dimensional hybrid simulation of magnetized plasma flow around an obstacle

Abstract

The interaction between the magnetized plasma flow and an obstacle was investigated in the computer simulations described here by using a three-dimensional hybrid code (kinetic ions and massless fluid electrons). The results, which are relevant to the interaction between the solar wind and an unmagnetized planet (Venus or Mars), show that fundamental structures (bow shock and magnetotail) are formed. When a reflecting boundary is used at the obstacle, the magnetic field configuration was clearly asymmetrical in the direction of the convection electric field. This asymmetry is a result of differences in ion acceleration due to the convection electric field. Asymmetry is also evident when the size of the obstacle is close to the Larmor radius of protons. The shock of a smaller obstacle is weaker than that of a larger obstacle, but the shock size is almost independent of the obstacle size.

References

  • Alexander, C. J., J. G. Luhmann, and C. T. Russell, Interplanetary field control of the location of the Venus bow shock: Evidence for comet-like ion pickup, Geophys. Res. Lett., 13, 917–920, 1986.

    Article  Google Scholar 

  • Brecht, S. H., Magnetic asymmetries of unmagnetized planets, Geophys. Res. Lett., 17, 1243–1246, 1990.

    Article  Google Scholar 

  • Brecht, S. H. and J. R. Ferrante, Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars, J. Geophys. Res., 96, 11209–11220, 1991.

    Article  Google Scholar 

  • Brecht, S. H., J. R. Ferrante, and J. G. Luhmann, Three-dimensional simulations of the solar wind interaction with Mars, J. Geophys. Res., 98, 1345–1357, 1993.

    Article  Google Scholar 

  • Brecht, S. H., Hybrid simulations of the magnetic topology of Mars, J. Geophys. Res., 102, 4743–4750, 1997.

    Article  Google Scholar 

  • Intriligator, D. S., Observations of mass addition to the shocked solar wind of the Venusian ionosheath, Geophys. Res. Lett., 9, 727–730, 1982.

    Article  Google Scholar 

  • Leroy, M. M., D. Winske, C. C. Goodrich, C. S. Wu, and K. Papadopoulos, The structure of perpendicular bow shocks, J. Geophys. Res., 87, 5081–5094, 1982.

    Article  Google Scholar 

  • Luhmann, J. G., C. T. Russell, J. R. Spreiter, and S. S. Stahara, Evidence for mass-loading of the Venus magnetosheath, Adv. Space Res., 5, 307–311, 1985.

    Article  Google Scholar 

  • Marubashi, K., J. M. Grebowsky, H. A. Taylor, Jr., J. G. Luhmann, C. T. Russell, and A. Barnes, Magnetic field in the wake of Venus and the formation of ionospheric holes, J. Geophys. Res., 90, 1385–1398, 1985.

    Article  Google Scholar 

  • Moore, K. R., V. A. Thomas, and D. J. McComas, Global hybrid simulation of the solar wind interaction with the dayside of Venus, J. Geophys. Res., 96, 7779–7791, 1991.

    Article  Google Scholar 

  • Phillips, J. L., J. G. Luhmann, C. T. Russell, and K. R. Moore, Finite Larmor radius effect on ion pickup at Venus, J. Geophys. Res., 92, 9920–9930, 1987.

    Article  Google Scholar 

  • Russell, C. T., E. Chou, J. G. Luhmann, P. Gazis, L. H. Brace, and W. R. Hoegy, Solar and interplanetary control of the location of the Venus bow shock, J. Geophys. Res., 93, 5461–5469, 1988.

    Article  Google Scholar 

  • Saunders, M. A. and C. T. Russell, Average dimension and magnetic structure of the distant Venus magnetotail, J. Geophys. Res., 91, 5589–5604, 1986.

    Article  Google Scholar 

  • Shimazu, H., S. Machida, and M. Tanaka, Macroparticle simulation of collisionless parallel shocks generated by solar wind and planetary plasma interactions, J. Geophys. Res., 101, 7647–7658, 1996.

    Article  Google Scholar 

  • Slavin, J. A. and R. E. Holzer, Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape, J. Geophys. Res., 86, 11401–11418, 1981.

    Article  Google Scholar 

  • Slavin, J. A., R. C. Elphic, and C. T. Russell, A comparison of Pioneer Venus and Venera bow shock observations: Evidence for a solar cycle variation, Geophys. Res. Lett., 6, 905–908, 1979.

    Article  Google Scholar 

  • Slavin, J. A., R. E. Holzer, J. R. Spreiter, S. S. Stahara, and D. S. Chaussee, Solar wind flow about the terrestrial planets 2. Comparison with gas dynamic theory and implications for solar-planetary interactions, J. Geophys. Res., 88, 19–35, 1983.

    Article  Google Scholar 

  • Slavin, J. A., D. S. Intriligator, and E. J. Smith, Pioneer Venus Orbiter magnetic field and plasma observations in the Venus magnetotail, J. Geophys. Res., 94, 2383–2398, 1989.

    Article  Google Scholar 

  • Spreiter, J. R., A. L. Summers, and A. W. Rizzi, Solar wind flow past nonmagnetic planets-Venus and Mars, Planet. Space Sci., 18, 1281–1299, 1970.

    Article  Google Scholar 

  • Tanaka, T., Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: Calculation by a new MHD simulation scheme, J. Geophys. Res., 98, 17251–17262, 1993.

    Article  Google Scholar 

  • Yeroshenko, Ye., W. Riedler, K. Schwingenschuh, J. G. Luhmann, M. Ong, and C. T. Russell, The magnetotail of Mars: Phobos observations, Geophys. Res. Lett., 17, 885–888, 1990.

    Article  Google Scholar 

  • Zhang, T. L., K. Schwingenschuh, H. Lichtenegger, W. Riedler, C. T. Russell, and J. G. Luhmann, Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction, J. Geophys. Res., 96, 11265–11269, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Shimazu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shimazu, H. Three-dimensional hybrid simulation of magnetized plasma flow around an obstacle. Earth Planet Sp 51, 383–393 (1999). https://doi.org/10.1186/BF03352242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352242

Keywords

  • Solar Wind
  • Downstream Side
  • Upstream Side
  • Larmor Radius
  • Solar Wind Interaction