Skip to main content

Advertisement

Precision of the paleomagnetic method: An example from the Quaternary Eifel volcanics (Germany)

Article metrics

  • 217 Accesses

  • 5 Citations

Abstract

The total within-site dispersion of paleomagnetic data results from natural misalignment processes and experimentally produced dispersion. Although some of the sources of dispersion may be determined by experiments, this is not possible for others. The total accuracy of the paleomagnetic method so far has been determined only on historic lava flows. Thirty-seven Quaternary basaltic lava flows from the Eifel, Germany, have been re-sampled using the same outcrops as before. The new site-mean directions do not differ significantly from those of the original study. The angular distance between pairs of site-mean directions may be approximated by a Fisher distribution. Assuming that both studies are affected by the same natural dispersion processes, we obtain as the best value for the experimental dispersion sexp = 4.33°. The total within-site dispersion shows a log-normal distribution with a mean of stot = 5.39°. From these values we calculate that the dispersion due to natural processes in the Eifel volcanic field is snat = 3.21°.

References

  1. Baag, C., C. E. Helsely, S. Z. Xu, and R. Lienert, Deflection of paleomagetic directions due to magnetization of underlying terrain, J. Geophys. Res., 100, 10013–10027, 1995.

  2. Bogaard, P. van den and H.-U. Schmincke, Aschenlagen als quartäre Zeitmarken in Mitteleuropa, Die Geowissenschaften, 30, 75–84, 1988.

  3. Böhnel, H., Paläomagnetische Untersuchungen an quartären Vulkaniten der Osteifel, Diplom. thesis, Inst. Geophys. Münster, 1977.

  4. Böhnel, H., H. Kohnen, J. Negendank, and H.-U. Schmincke, Paleomagnetism of Quaternary volcanics of the East-Eifel, Germany, J. Geophys., 51, 29–37, 1982.

  5. Böhnel, H., N. Reismann, G. Jäger, U. Haverkamp, J. F. W. Negendank, and H.-U. Schmincke, Paleomagnetic investigation of Quaternary West Eifel volcanics (Germany): indication for increased volcanic activity during geomagnetic excursion/event?, J. Geophys., 62, 50–61, 1987.

  6. Büchel, G. and H. Mertes, Die Eruptionszentren des Westeifeler Vulkanfeldes, Z. dt. geol. Ges., 133, 409–429, 1982.

  7. Coe, R. S., The determination of paleointensities of the earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behaviour in Thellier’s method, J. Geomag. Geoelectr., 19, 157–179, 1967.

  8. Doell, R. R. and A. Cox, The accuracy of the paleomagnetic method as evaluated from historic Hawaiian lava flows, J. Geophys. Res., 68, 1997–2009, 1963.

  9. Fisher, R. A., Dispersion on a sphere, Proc. R. Soc. London, A127, 295–305, 1953.

  10. Fuhrmann, U. and H. J. Lippolt, Excess argon and dating of Quaternary Eifel volcanism: III. Alkali basaltic rocks of the Central West Eifel/FR Germany, Neues Jg. Geol. Palaont. Mh., H4, 213–216, 1987.

  11. Hagstrum, J. T. and D. E. Champion, Paleomagnetic correlation of late Quaternary lava flows in the lower east rift of Kilauea volcano, Hawaii, J. Geophys. Res., 99, 21679–21690, 1994.

  12. Haverkamp, U., Paläomagnetische Untersuchungen an quartären Vulkaniten der Westeifel, Diplom. thesis, Inst. Geophys. Münster, 1980.

  13. Holcomb, R., D. Champion, and M. McWilliams, Dating recent Hawaiian lava flows using paleomagnetic secular variation, Geol. Soc. Am. Bull, 97, 829–839, 1986.

  14. Irving, E., P. M. Stott, and M. A. Ward, Demagnetization of igneous rocks by alternating magnetic fields, Phil. Mag., 6, 225–241, 1961.

  15. Jäger, G., Paläomagnetische Untersuchungen im quartären Vulkanfeld der Westeifel, Diplom. thesis, Inst. Geophys. Münster, 1982.

  16. Kohnen, H. and H. Wëstkamper, Paleosecular variation studies of the Brunhes epoch in the volcanic province of the East-Eifel, Germany, J. Geophys., 44, 545–555, 1978.

  17. McFadden, P. L. and F. J. Lowes, The discrimination of mean directions drawn from Fisher distributions, Geophys. J. R. astr. Soc, 67, 19–33, 1981.

  18. Reismann, N., Abschließende paläomagnetische Untersuchungen zur Verteilung der virtuellen geomagnetischen Pole für das quartäre Vulkanfeld der Westeifel, Diplom. thesis, Inst. Geophys. Münster, 1985.

  19. Schnepp, E., Die erdmagnetische Paläointensität im quartären Vulkanfeld der Westeifel, Ph.D. thesis, Inst. Geophys. Münster, 1991.

  20. Schnepp, E., Determination of geomagnetic palaeointensities from the Quaternary West Eifel volcanic field, Geophys. J. Int., 116, 688–714, 1994.

  21. Schnepp, E., Paleointensity study of Quaternary East Eifel phonolithic rocks (Germany), Geophys. J. Int., 121, 627–633, 1995.

  22. Schnepp, E., Geomagnetic paleointensities derived from volcanic rocks of the Quaternary East Eifel field, Germany, Phys. Earth Planet. Int., 94, 23–41, 1996.

  23. Schnepp, E. and H. Hradetzky, Combined paleointensity and 40Ar/39 Ar age spectrum data from volcanic rocks of the West Eifel field (Germany): Evidence for an early Brunhes geomagnetic excursion, J. Geophys. Res., 99, 9061–9076, 1994.

  24. Watson, G. S., Analysis of dispersion on a sphere, Mon. Not. R. astr. Soc, Geophys. Suppl, 7, 153–159, 1956.

  25. Westkämper, H., Untersuchungen zur Paläosäkularvariation des Pleistozäns in der quartären Vulkanregion der Osteifel, Diplom. thesis, Inst. Geophys. Münster, 1977.

Download references

Author information

Correspondence to Harald Böhnel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Keywords

  • Magnetic Anomaly
  • Angular Distance
  • Difference Vector
  • Paleomagnetic Data
  • Magnetic Compass