Skip to main content

Volume 52 Supplement 10

Special Issue: Application of GPS and other space geodetic techniques to Earth Sciences (1)

Crustal motion results derived from observations in the European geodetic VLBI network

Abstract

Geodetic VLBI observations have been performed with the European geodetic VLBI network since early 1990 on a regular basis. The purpose of these observations is to determine crustal motion in Europe and to establish a stable reference frame for other space geodetic techniques. Over the years the size of the network and the number of participating stations has steadily increased. Today, the network extends from the island of Sicily in the south to the island of Spitsbergen/Svalbard in the north and from the Iberian peninsula in the west to the Crimean peninsula in the east. The area covered by the network is affected by two main geodynamic processes which are post-glacial rebound effects in the northern part, and the evolution of the Alps-Apennines orogenic systems in the southern part. With nearly 10 years of VLBI observations the determination of crustal motion in Europe is carried out with high accuracy. Baseline measurements are achieved with an accuracy of a few parts per billion. We compare the evolution of baseline lengths and topocentric station displacements with geophysical models. Strain rates in Europe on a large scale are determined from the results of the VLBI analysis.

References

  1. Albarello, D., E. Mantovani, D. Babbucci, and C. Tamburelli, Africa-Eurasia kinematics: main constraints and uncertainties, Tectonophysics, 243, 25–36, 1995.

    Article  Google Scholar 

  2. Altiner, Y., Geometrische Modellierung innerer und äußerer Deformationen der Erdoberfläche, Deutsche Geodätische Kommission, Reihe C: Dissertationen, 462, 1996.

  3. Campbell, J., Measurement of Vertical Motion in Europe by VLBI—Further Support of the European Geodetic VLBI network by the European Union, Proc. of the 11th Working Meeting on European VLBI for Geodesy and Astrometry Chalmers Research Report 177, 227–231, Onsala, Sweden, 1996.

    Google Scholar 

  4. Campbell, J., Measurement of Vertical Motion in Europe by VLBI—Status of the EU-TMR Network, Proc. of the 12th Working Meeting on European VLBI for Geodesy and Astrometry, 1–8, Hønefoss, Norway, 1997.

  5. De Mets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effect of recent revision to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21(20), 2191–2194, 1994.

    Article  Google Scholar 

  6. Dewey, J. F., M. L. Helman, E. Turco, D. H. W. Hutton, and S. D. Knott, Kinematics of the western Mediterranean, Alpine Tectonics. Geol. Soc. Sp. Publ, 45, 265–283, 1989.

    Article  Google Scholar 

  7. Doglioni, C., E. Gueguen, F. Sabat, and M. Fernandez, The western Mediterranean extensional basins and the Alpine orogen, Terra Nova, 9, 109–112, 1997.

    Article  Google Scholar 

  8. Eanes, R. J. and S. Bettadpur, The CSR 3.0 global ocean tide model, Center for Space Research, Technical Memorandum, CSR-TM-95-06, 1995.

  9. Gueguen, E., C. Doglioni, and M. Fernandez, On the post-25 Ma geodynamic evolution of the western Mediterranean, Tectonophysics, 298, 259–269, 1998.

    Article  Google Scholar 

  10. Haas, R., Untersuchungen zu Erddeformationsmodellen zur Auswertung von geodätischen VLBI-Messungen, Deutsche Geodätische Kommission, Reihe C: Dissertationen, 466, 1996.

  11. Lieske, J. H., T. Lederle, W. Fricke, and B. Morando, Expressions for the Precession Quantities Based upon the IAU (1976) System of Astronomical Constants, Astron. Astrophys., 58, 1–16, 1977.

    Google Scholar 

  12. Ma, C. and J. W. Ryan, NASA Space Geodesy Program—GSFC Data Analysis—1998, VLBI Geodetic Results 1979–1998, August, 1998, http://lupus.gsfc.nasa.gov/global/glb.html, 1998.

  13. Ma, C., J. M. Sauber, L. J. Bell, T. A. Clark, D. Gordon, and W. E. Himwich, Measurement of horizontal motions in Alaska using very long baseline interferometry, J. Geophys. Res., 95, 21991–22011, 1990.

    Article  Google Scholar 

  14. McCarthy, D. D., (ed.) IERS Conventions (1996), IERS Technical Note21, Observatoire de Paris, 1996.

  15. Mitrovica, J. X., J. L. Davis, and I. I. Shapiro, A spectral formalism for computing three-dimensional deformations due to surface loads, 2. Present-day glacial isostatic adjustment, J. Geophys. Res., 99, 7075–7101, 1994.

    Article  Google Scholar 

  16. Nesterov, N. and A. Volvach, Simeiz VLBI station, International VLBI Service for Geodesy and Astrometry, Annual Report 1999, NASA/TP-1999-209243, 96–100, 1999.

    Google Scholar 

  17. Niell, A. E., Global mapping functions for the atmosphere delay at radio wavelength, J. Geophys. Res., 101, 3227–3246, 1996.

    Article  Google Scholar 

  18. Nothnagel, A., IRIS-S batch Solutions at the Geodetic Institute of the University of Bonn, Proc. of the 9th Working Meeting on European VLBI for Geodesy and Astrometry, 42–48, Bad Neuenahr, Germany, 1993.

  19. Nothnagel, A. and J. Campbell, European Baseline Rate Determinations with VLBI, Proc. of the 9th Working Meeting on European VLBI for Geodesy and Astrometry, 56–59, Bad Neuenahr, Germany, 1993.

  20. Rehault, J.-P., J. Mascle, and G. Boilot, Evolution géodynamique de la Méditerranée depuis l’Oligocéne, Mém. Soc. géol. It., 27, 85–96, 1984.

    Google Scholar 

  21. Scherneck, H.G., A comprehensive and tentatively complete summary of oceanic effects in space geodetic baseline measurements, Proc. of the 11th Working Meeting on European VLBI for Geodesy and Astrometry, Chalmers Research Report 177, 121–133, Onsala, Sweden, 1996.

    Google Scholar 

  22. Scherneck, H.-G., J. M. Johansson, J. X. Mitrovica, and J. L. Davis, The BIFROST project: GPS determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWEPOS network, Tectonophysics, 294, 305–321, 1998.

    Article  Google Scholar 

  23. Seidelmann, P. K., 1980 IAU Nutation: The Final report of the IAU Working Group on Nutation, Celest. Mech., 27, 79–106, 1982.

    Article  Google Scholar 

  24. Tamura, Y., A harmonic development of the tide-generating potential, Bulletin d’Information Marées Terrestres, 99, 6813–6855, 1987.

    Google Scholar 

  25. Tomasi, P., F. Mantovani, M. Negusini, A. Orfei, and P. Sarti, Activities and recent results in Geodynamics, Proc. of the 12th Working Meeting on European VLBI for Geodesy and Astrometry, 102–110, Hønefoss, Norway, 1997.

  26. Tushingham, A. M. and W. R. Peltier, Ice-3G: a new global model of Late Peistocene deglaciation based upon geophysical predictions of postglacial relative sea level change, J. Geophys. Res., 96, 4497–4523, 1991.

    Article  Google Scholar 

  27. Wahr, J. M., Body tides on an elliptical, rotating, elastic and oceanless earth, Geophys. J. R. A. S., 64, 677–703, 1981.

    Article  Google Scholar 

  28. Wessel, P. and W. H. F. Smith, New version of the Generic Mapping Tool released, EOS Trans. AGU, 76, 329, 1995.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Haas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haas, R., Gueguen, E., Scherneck, HG. et al. Crustal motion results derived from observations in the European geodetic VLBI network. Earth Planet Sp 52, 759–764 (2000). https://doi.org/10.1186/BF03352278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352278

Keywords

  • European Union
  • Global Position System
  • Ocean Tide
  • Baseline Length
  • Ocean Tide Model