Skip to main content

Volume 52 Supplement 10

Special Issue: Application of GPS and other space geodetic techniques to Earth Sciences (1)

  • Letter
  • Published:

Airborne geoid determination

Abstract

Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate “seam-less” geoid model across most coastal regions. Determination of the geoid by airborne methods relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5–10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well-suited for geoid determination, with high-frequency survey and downward continuation noise being offset by the low-pass gravity to geoid filtering operation. In the paper the basic principles of airborne geoid determination are outlined, and examples of results of recent airborne gravity and geoid surveys in the North Sea and Greenland are given.

References

  • Andersen, O. B., Surface-ship Gravity Measurements in the Skagerrak 1965–66, Geodætisk Institut Meddelelse no. 42, 52 pp., Copenhagen, 1966.

  • Bastos, L., S. Cunha, R. Forsberg, A. Olesen, A. Gidskehaug, U. Meyer, T. Boebel, L. Timmen, M. Nesemann, and K. Hehl, An Airborne Geoid Mapping System for Regional Sea-Surface Topography, in Geodesy on the Move, edited by R. Forsberg and M. Feissl, IAG Procedeedings Series 119, pp. 30–36, Springer Verlag, 1997.

    Chapter  Google Scholar 

  • Brozena, J., The Greenland Aerogeophyscis Experiment, Airborne Gravity, Topographic and Magnetic Mapping of an entire Continent, in From Mars to Greenland: Charting Gravity with Space and Airborne Instruments, edited by O. Colombo, IAG Symposium Series 110, pp. 203–214, Springer Verlag, 1991.

    Chapter  Google Scholar 

  • Forsberg, R., A new covariance model for inertial gravimetry and gradiometry, J. Geophys. Res., 92(B2), 1305–1310, 1987.

    Article  Google Scholar 

  • Forsberg, R. and M. G. Sideris, Geoid computations by the multi-band spherical FFT approach, Manuscripta Geodaetica, 18, 82–90, 1993.

    Google Scholar 

  • Forsberg, R., K. Hehl, L. Bastos, A. Gidskehaug, and U. Meyer, Development of an Airborne Geoid Mapping System for Coastal Oceanography (AGMASCO), in Gravity Geoid and Marine geodesy, edited by J. Segawa, H. Fujimoto, and S. Okubo, IAG Symposium Series 117, pp. 163–170, Springer Verlag, 1996.

    Chapter  Google Scholar 

  • Forsberg, R., J. Kaminskis, and D. Solheim, Geoid of the Nordic and Baltic Region from Gravimetry and Satellite Altimetry, in Gravity Geoid and Marine Geodesy, edited by J. Segawa, H. Fujimoto, and S. Okubo, IAG Symposium Series 117, pp. 540–547, Springer Verlag, 1996.

    Chapter  Google Scholar 

  • Forsberg, R., A. Olesen, and K. Keller, Airborne Gravity Survey of the North Greenland Shelf 1998, Technical Report no. 10, 34 pp., Kort og Matrikelstyrelsen, Copenhagen, 1999.

    Google Scholar 

  • Heiskanen, W. and H. Moritz, Physical Geodesy, W. H. Freeman, San Francisco, Calif., 1967.

    Google Scholar 

  • Lemoine, F. G., D. Smith, R. Smith, L. Kunz, E. Pavlis, N. Pavlis, S. Klosko, D. Chinn, M. Torrence, R. Williamson, C. Cox, K. Rachlin, Y. Wang, S. Kenyon, R. Salman, R. Trimmer, R. Rapp, and S. Nerem, The development of the NASA GSFC and DMA joint geopotential model, Proc. Symp. on Gravity, Geoid and Marine Geodesy, Tokyo, pp. 461–469, 1996.

    Google Scholar 

  • Olesen, A., R. Forsberg, and A. Gidskehaug, Airborne Gravimetry using the LaCoste and Romberg Gravimeter—an Error Analysis, Proc. Int. Symp. on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS-97), Dept. of Geomatics Engineering, University of Calgary, pp. 613–618, 1997.

    Google Scholar 

  • Schwarz, K. P., Airborne gravimetry and the boundary value problem, Lecture Notes, International Summer School on Mathematical Geodesy, Como, Italy, 1996.

  • Valliant, H., The Lacoste and Romberg Gravity Sensor, in CRC Handbook of Geophysical Exploration at Sea, Boca Raton Press, 1989.

  • Xu, G., K. Hehl, and D. Angermann, GPS software development for aerogravity: Realization and first results, Proc. ION GPS-94, pp. 1637–1642, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Forsberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsberg, R., Olesen, A., Bastos, L. et al. Airborne geoid determination. Earth Planet Sp 52, 863–866 (2000). https://doi.org/10.1186/BF03352296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352296

Keywords