Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data

Abstract

The radio holographic principle is briefly described and tested by using radio occultation data of the GPS/MET and MIR/GEO experiments. Sub-Fresnel spatial resolution 12 m/pixel was achieved using focused synthetic aperture radio holographic approach, and direct evidence of multibeam propagation effects in the atmosphere was obtained. The achieved instrumental accuracy in angular distance measurements was near 0.004 milliradian/pixel, and observed angular distance between different rays was equal to 0.3 milliradians. The angular resolution of the radio holographic method depends on the wavelength as λ1 compared to λ1/2 in conventional methods. In general case the principal limit of the vertical resolution may be determined using focused synthetic aperture antenna theory and may achieve a value 20–40 m under assumptions of spherical symmetry and quiet atmospheric conditions. Wave structures were discovered in the altitude distribution of the gradient electron density at a height interval of 60–95 km with spatial period 1–2 km and vertical resolution 300–500 m. Good correspondence was found between the temperature profiles revealed by radio holographic analysis and those obtained by traditional retrieval using UCAR GPS/MET data.

References

  1. Feng, D. D. and B. M. Herman, Remotely sensing the Earth’s atmosphere using the Global Positioning System (GPS)—the GPS/MET data analysis, Journal of Atmospheric and Ocean Technology, 16, 990–1002, 1999.

  2. Gorbunov, M. E. and A. S. Gurvich, Microlab-1 experiment: Multipath effects in the lower troposphere, J. Geophys. Res., 103, 13,819–13,826, 1998.

  3. Gorbunov, M. E., A. S. Gurvich, and L. Bengtsson, Advanced algorithms of inversion of GPS/MET satellite data and their application to reconstruction of temperature and humidity, Report 211 Max-Planck-Institute for Meteorology ISSN 0937-1060, 1996.

  4. Gorbunov, M. E., S. V. Sokolovskiy, and L. Bengtsson, Space Refractive Tomography of the Atmosphere: Modelling of Direct and Inverse Problems, Report 210 Max-Planck-Institute for Meteorology ISSN 0937-1060, 1996.

  5. Gorbunov, M. E., A. S. Gurvich, and L. Kornblueh, Comparative analysis of radio holographic methods of radio occultation data, Radio Sci., 35(4), 1025–1034, 2000.

  6. Hocke, K., Inversion of GPS meteorology data, Annales Geophysicae, 15, 443–450, 1997.

  7. Hocke, K., A. Pavelyev, O. Yakovlev, L. Barthes, and N. Jakowski, Radio occultation data analysis by radio holographic method, JASTP, 61, 1169–1177, 1999.

  8. Igarashi, K., Y. Murayama, K. Hocke, R. Yamazaki, M. Kunitake, M. Nagayama, and I. Nishimuta, Coordinated observations of the dynamics and coupling processes of mesosphere and lower thermosphere winds with MF radars at the middle-high latitude, Earth Planets Space, 51, 657–664, 1999.

  9. Karayel, E. T. and D. P. Hinson, Sub-Fresnel-scale vertical resolution in atmospheric profiles from radio occultation, Radio Sci., 32(2), 411–428, 1997.

  10. Kravtsov, Yu. and Yu. N. Orlov, Geometrical Optics of Inhomogeneous Media, Springer-Verlag, New York, 1990.

  11. Kursinski, E. R., et al., Initial results of radio occultation observations of Earth’s atmosphere: using the Global Positioning System, Science, 271, 1107–1110, 1996.

  12. Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102(D19), 23,429–23,465, 1997.

  13. Lindal, G. F., The atmosphere of Neptune: An analysis of radio occultation data acquired with Voyager 2, Astron. J., 103, 967–982, 1992.

  14. Lindal, G. F., J. R. Lyons, D. N. Sweetnam, V. R. Eshleman, D. P. Hinson, and G. L. Tyler, The atmosphere of Uranus: results of radio occultation measurements with Voyager 2, J. Geophys. Res., 92, 14,987–15,001, 1987.

  15. Marouf, E. A., G. L. Tyler, and P. A. Rosen, Profiling Saturn rings by radio occultation, Icarus, 68, 120–166, 1986.

  16. Melbourne, W. G., E. S. Davis, C. B. Duncan, G. A. Hajj, K. R. Hardy, E. R. Kursinski, T. K. Meehan, L. E. Young, and T. P. Yunck, The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring, 147 pp., JPL Publication 94-18, April 1994.

  17. Mortensen, M. D. and P. Hoeg, Inversion of GPS occultation measurements using Fresnel diffraction theory, Geophys. Res. Lett., 25(13), 2441–2449, 1998.

  18. Mortensen, M. D., R. P. Linfield, and E. R. Kursinski, Vertical resolution approaching 100 m for GPS occultations of the Earth’s atmosphere, Radio Sci., 34(6), 1475–1483, 1999.

  19. Pavelyev, A., On the possibility of radio holographic investigation on communication link satellite-to-satellite, Radioteknika i elektronika, 43(8), 939–944, 1998 (in Russian).

  20. Pavelyev, A. and S. D. Yeliseyev, Study of the Atmospheric Layer near the Ground using Bistatic Radar, Journal of Communication Technology and Electronics, No. 9, 124–130, 1988.

  21. Pavelyev, A., S. Matugov, I. Kalashnikov, and O. Yakovlev, Analysis of the features of radio occultation method for the Earth’s atmosphere study, in Electromagnetic Waves in the Atmosphere and Space, pp. 208–218, “Nauka” Ed., Moscow, 1986 (in Russian).

  22. Pavelyev, A., A. V. Volkov, A. I. Zakharov, S. A. Krytikh, and A. I. Kucherjavenkov, Bistatic Radar as a Tool for Earth Investigation Using Small Satellites, Acta Astronautica, 39, 721–730, 1996.

  23. Pavelyev, A., K. Hocke, O. Yakovlev, N. Jakowski, J. Wickert, S. Matugov, A. Kucherjavenkov, A. Wehrenpfennig, and A. Zakharov, Radio holographic method for atmosphere sounding using small satellite, in Small satellites for Earth Observation. Digest of the 2nd International Symposium of the International Academy of Astronautics, edited by H. P. Roser, R. Sandau, A. Valenzuella, pp. 199–202, Wissenschaft und Technik Verlag, Berlin, 1999.

  24. Rocken, C., et al., Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102(D25), 29,849–29,866, 1997.

  25. Schreiner, W. S., S. V. Sokolovskij, C. Rocken, and D. C. Hunt, Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34(4), 949–966, 1999.

  26. Tyler, G. L., et al., Voyager radio science observations of Neptune and Triton, Science, 246, 1466–1473, 1989.

  27. Vorob’ev, V. V. and T. G. Krasil’nikova, Estimation of accuracy of the atmosphere refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Izv Russ. Acad. Sci., Physics of the Atmosphere and Ocean, Engl. Transl., 29(5), 602–609, 1994.

  28. Vorob’ev, V. V., A. S. Gurvich, V. Kan, S. V. Sokolovskiy, O. V. Fedorova, and A. V. Shmakov, Structure of the Ionosphere from the Radio-Occultation GPS-“Microlab-1’ Satellite Data: Preliminary Results, Earth Observations and Remote Sensing, 15, 609–622, 1999.

  29. Ware, R., et al., GPS sounding of the atmosphere from low Earth orbit—Preliminary results, Bull. Am. Meteorol. Soc., 77, 19–40, 1996.

  30. Wehner, D. R., High Resolution Radar, 573 pp., Ed. Artech House, Inc. 685 Canton Street Norwood, MA 02062, 1987.

  31. Yakovlev, O. I., Space Radio Physics, edited by By Russian Fund of Fundamental Researches (RFBR), 478 pp., Moscow, 1998 (in Russian).

  32. Yakovlev, O. I., S. S. Matyugov, and I. A. Vilkov, Attenuation and scintillation of radio waves in the Earth’s atmosphere from radio occultation experiments on satellite-to-satellite links, Radio Sci., 30(3), 591–602, 1995.

  33. Zverev, V. A., Radio Optics, edited by Soviet Radio, Moscow, 1975 (in Russian).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Igarashi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Igarashi, K., Pavelyev, A., Hocke, K. et al. Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data. Earth Planet Sp 52, 893–899 (2000). https://doi.org/10.1186/BF03352302

Download citation

Keywords

  • Global Position System
  • Vertical Resolution
  • Radio Occultation
  • Main Beam
  • Angular Spectrum