Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Using GPS-IPW in a 4-D data assimilation system

Abstract

The NOAA Forecast Systems Laboratory (FSL) has been continuously calculating integrated atmospheric precipitable water (IPW) from GPS signal delays since 1994. Using rapid orbit information, these data have the accuracy required for use in a numerical weather prediction model through data assimilation. Parallel cycles with and without GPS-IPW data have been running at FSL since November 1997 using the 60-km Rapid Update Cycle (RUC). Verification of the analysis and the 3, 6, and 12-h forecasts against rawinsondes has been ongoing throughout the experiment. Results from these statistics show a consistent improvement in short-range forecasts of relative humidity when the GPS data are included. Precipitation verification has also been calculated for this experiment, and results show that GPS data also improve these forecasts. Recently, the average number of available GPS observations jumped from 18 to 56, and results for November–December 1999 show that the previous slight positive signal is now amplified to a stronger positive impact on the short-range moisture forecasts.

References

  1. Aune, R. A., Improved precipitation predictions using total precipitable water from VAS, 10th Conf. on Num. Wea. Pred., AMS, Portland, 192–194, 1994.

    Google Scholar 

  2. Benjamin, S. G., K. J. Brundage, and L. L. Morone, The Rapid Update Cycle. Part I: Analysis/model description, Technical Procedures Bulletin No. 416, NOAA/NWS, 16 pp., 1994 [National Weather Service, Office of Meteorology, 1325 East-West Highway, Silver Spring, MD 20910].

  3. Benjamin, S. G., J. M. Brown, K. J. Brundage, B. E. Schwartz, T. G. Smirnova, T. L. Smith, L. L. Morone, and G. J. DiMego, The operational RUC-2, 16th Conf. on Wea. Anal. and Forecasting, AMS, Phoenix, 249–252, 1998a.

    Google Scholar 

  4. Benjamin, S. G., T. L. Smith, B. E. Schwartz, S. I. Gutman, and D. Kim, Precipitation forecast sensitivity to GPS precipitable water observations combined with GOES using RUC-2, 12th Conf. on Num. Wea. Pred., AMS, Phoenix, 73–76, 1998b.

    Google Scholar 

  5. Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, GPS meteorology: Mapping zenith wet delays onto precipitable water, J. Appl. Meteor., 33, 379–386, 1994.

    Article  Google Scholar 

  6. Doswell, C. A., R. Davies-Jones, and D. L. Keller, On summary measures of skill in rare event forecasting based on contingency tables, Wea. Forecasting, 5, 576–585, 1990.

    Article  Google Scholar 

  7. Duan, J., M.Bevis, P. Feng, Y. Bock, S. R. Chiswell, S. Businger, C. Rocken, F. Soldheim, R.H. Ware, T. A. Hering, and R. W. King, GPS meteorology: Direct estimation of the absolute value of precipitable water, J. Appl. Meteor., 35, 830–838, 1996.

    Article  Google Scholar 

  8. Filiberti, M. A., L. Eymard, and B. Urban, Assimilation of satellite precipitable water in a meteorological forecast model, Mon. Wea. Rev., 122, 486–506, 1994.

    Article  Google Scholar 

  9. Gal-Chen, T., B. D. Schmidt, and L. W. Uccellini, Simulation experiments for testing the assimilation of geostationary satellite temperature retrievals into a numerical prediction model, Mon. Wea. Rev., 114, 1213–1230, 1986.

    Article  Google Scholar 

  10. Kuo, Y.-H., Y.-R. Guo, and E. R. Westwater, Assimilation of precipitable water measurements into a mesoscale numerical model, Mon. Wea. Rev., 121, 1215–1238, 1993.

    Article  Google Scholar 

  11. Ledvina, D. V. and J. Pfaendtner, Inclusion of Special Sensor Microwave/Imager (SSM/I) total precipitable water estimates into the GEOS-1 data assimilation system, Mon. Wea. Rev., 123, 3003–3015, 1995.

    Article  Google Scholar 

  12. Saastamoinen, J., Introduction to practical computation of astronomical refraction, Bull. Geod., 106, 383–397, 1972.

    Article  Google Scholar 

  13. Wolfe, D. E. and S. I. Gutman, Development of the NOAA/ERL Ground-Based GPS Water Vapor Demonstration Network: Design and Initial Results, J. Atmos. Ocean. Technol., 2000 (in press).

  14. Wolfe, D. E., S. I. Gutman, R. B. Chadwick, P. Fang, and Y. Bock, Development of an operational surface-based GPS water vapor observing system for NOAA: Network design and project status, 2nd Symp. on Int. Obs. Sys., AMS, Phoenix, J86–J91, 1998.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tracy L. Smith.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, T.L., Benjamin, S.G., Schwartz, B.E. et al. Using GPS-IPW in a 4-D data assimilation system. Earth Planet Sp 52, 921–926 (2000). https://doi.org/10.1186/BF03352306

Download citation

Keywords

  • Global Position System
  • Precipitable Water
  • Global Position System Data
  • Global Position System Observation
  • Equitable Threat Score