Skip to main content

Sensing atmospheric structure: Tropospheric tomographic results of the small-scale GPS campaign at the Onsala Space Observatory

Abstract

Tropospheric tomography using data from local networks of Global Positioning System (GPS) receivers is producing encouraging spatio-temporal representations of the wet refractivity field. In this work we present the results from a small-scale geodetic experiment that we carried out at the Onsala Space Observatory. Seven GPS receivers distributed within a radius of 3 km from the center, were deployed during 21 days in the summer 1998. The limited number of sites and their spatial configuration present a challenge for tropospheric tomography. Using novel GPS techniques to determine the vertical structure of the atmosphere, we observed, for one session, a strong horizontal water-vapor gradient with a leading edge at higher altitude than the trailing edge, entering from the north. The vertical structure obtained independently using tomographic techniques matched such situation. These results suggest tomography is a promising technique for the determination of the spatio-temporal structure of the atmosphere. We will present preliminary results of the tropospheric tomography, using simulations and experimental data, together with some comparisons with radiosonde data.

References

  1. Bar-Sever, Y. E., P. M. Kroger, and J. A. Borjesson, Estimating horizontal gradients of tropospheric path delay with a single GPS receiver, J. Geophys. Res., 103, 5019–5035, 1998.

    Article  Google Scholar 

  2. Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. Ware, GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., 97(D14), 15787–15801, 1992.

    Article  Google Scholar 

  3. Davis, J. L., G. Elgered, A. E. Niell, and C. E. Kuehn, Ground-based measurement of gradients in the wet radio refractivity of air, Radio Sci., 28(6), 1003–1038, 1993.

    Article  Google Scholar 

  4. Elgered, G., J. L. Davis, T. A. Herring, and I. I. Shapiro, Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay, J. Geophys. Res., 96(B4), 6541–6555, 1991.

    Article  Google Scholar 

  5. Elósegui, P., J. L. Davis, L. P. Gradinarsky, G. Elgered, J. M. Johansson, D. A. Tahmoush, and A. Rius Sensing atmospheric structure using small-scale space geodetic networks, Geophys. Res. Lett., 26, 2445-2448,1999.

    Article  Google Scholar 

  6. Flores, A., Local tropospheric tomography software (LOTTOS) documentation, Technical report, IEEC, 1999.

    Google Scholar 

  7. Flores, A., G. Ruffini, and A. Rius, 4D tropospheric tomography using GPS slant wet delays, Annales Geophysicae, 18, 223–234, 2000.

    Article  Google Scholar 

  8. Herring, T. A., J. L. Davis, and I. I. Shapiro, Geodesy by radio interferometry: The application of kalman filtering to the analysis of very long baseline interferometry data, J. Geophys. Res., 95(B8), 12561–12581, 1990.

    Article  Google Scholar 

  9. Houghton, J. T., The Physics of Atmospheres, 203 pp., Cambridge University Press, 1977.

    Google Scholar 

  10. Kursinski, E. R., The GPS Radio Occultation Concept: Theoretical Performance and Initial Results, Ph.D. thesis, California Institute of Technology, 288 pp., 1997.

    Google Scholar 

  11. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran. The Art of Scientific Computing, 961 pp., Cambridge university Press, second edition, 1992.

  12. Ruffini, G., A. Flores, and A. Rius, GPS tomography of the ionospheric electron content with a correlation functional, IEEE Transactions on Geoscience and Remote Sensing, 36 (1), 1998.

  13. Ruffini, G., L. P. Kruse, A. Rius, B. Bürki, L. Cucurull, and A. Flores, Estimation of tropospheric zenith delay and gradients over the Madrid area using GPS and WVR data, Geophys. Res. Lett., 26(4), 447–450, 1999.

    Article  Google Scholar 

  14. Thayer, G. D., An improved equation for the radio refractive index of air, Radio Sci., 9(10), 803–807, 1974.

    Article  Google Scholar 

  15. Webb, F. H. and J. F. Zumberge, An Introduction to GIPSY-OASIS II, Jet Propulsion Laboratory, California Institute of Technology, 1997.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Flores.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flores, A., Gradinarsky, L.P., Elósegui, P. et al. Sensing atmospheric structure: Tropospheric tomographic results of the small-scale GPS campaign at the Onsala Space Observatory. Earth Planet Sp 52, 941–945 (2000). https://doi.org/10.1186/BF03352309

Download citation

Keywords

  • Global Position System
  • Global Position System Receiver
  • Radiosonde Data
  • Zenith Delay
  • Atmospheric Structure