Skip to main content

Geodynamical value of historical geodetic measurements: A theoretical analysis

Abstract

Historical geodetic measurements have been used to infer on the displacement and strain states locally or regionally. They are also often used to invert for other geophysical parameters. However, historical geodetic measurements have been known to contain significant scaling and orientation errors, which may even be different in different parts of a network. These significant error sources may result in producing a wrong (or at least, a misleading) displacement or strain field. When such a displacement or strain field is further used to invert certain geophysical parameters, mis-interpretations may be expected. Thus, in this paper, we will perform a theoretical analysis to answer the following three questions: (i) are displacements obtainable from historical geodetic data? (ii) are strains obtainable from historical geodetic data? and (iii) what geodynamical value do historical geodetic data have?

References

  1. Baarda, W., S-Transformation and Criterion Matrices, Neth. Geod. Comm. Publ. Geod., New Series, Vol. 5, No. 1, 1973.

  2. Bibby, H. M., Crustal strain from triangulation in Marlborough, New Zealand, Tectonophys., 29, 529–540, 1975.

    Article  Google Scholar 

  3. Bibby, H. M., Unbiased estimate of strain from triangulation data using the method of simultaneous reduction, Tectonophys., 82, 161–174, 1982.

    Article  Google Scholar 

  4. Brunner, F. K., R. Coleman, and B. Hirsch, A comparison of computation methods for crustal strains from geodetic measurements, Tectonophys., 71, 281–298, 1981.

    Article  Google Scholar 

  5. Chrzanowski, A., Y. Q. Chen, and J. M. Secord, On the strain analysis of tectonic movements using fault crossing geodetic surveys, Tectonophys., 97, 297–315, 1983.

    Article  Google Scholar 

  6. Dermanis, A., Geodetic estimability of crustal deformation parameters, Quaterniones Geod., 2, 159–169, 1981.

    Google Scholar 

  7. Dermanis, A., The role of frame definitions in the geodetic determination of crustal deformation parameters, Bull. Géod., 59, 247–274, 1985.

    Article  Google Scholar 

  8. Dermanis, A., A method for the determination of crustal deformation parameters and their accuracy from distances, J. Geod. Soc. Japan, 40, 17–32, 1994.

    Google Scholar 

  9. Dermanis, A. and E. Grafarend, Estimability analysis of geodetic, astrometric and geodynamical quantities in very long baseline interferometry, Geophys. J. R. astr. Soc., 64, 31–64, 1981.

    Article  Google Scholar 

  10. Frank, F. C., Deduction of earth strains from survey data, Bull. Seismol. Soc. Am., 56, 35–42, 1966.

    Google Scholar 

  11. Fujii, Y. and K. Nakane, Horizontal crustal movements in the Kanto-Tokai district, Japan, as deduced from geodetic data, Tectonophys., 97, 115–140, 1983.

    Article  Google Scholar 

  12. Grafarend, E. and B. Schaffrin, Equivalence of estimable quantities and invariance in geodetic networks, Z. Verm., 101, 485–491, 1976.

    Google Scholar 

  13. Gu, G. and W. H. Prescott, Discussion on displacement: Detection of crustal deformation, J. Geophys. Res., B91, 7439–7446, 1986.

    Google Scholar 

  14. Komaki, K., The readjustment of the Meiji first order triangulation network by the projection method, Bull. Geogr. Surv. Inst. Japan, 29, 1–45, 1985.

    Google Scholar 

  15. Komaki, K., Horizontal crustal movements revealed by geodetic measurements: On the methods for estimating displacement vectors, Bull. Geogr. Surv. Inst. Japan, 39, 1–41, 1993a.

    Google Scholar 

  16. Komaki, K., Horizontal crustal movements revealed by geodetic measurements: Applications of a new method for estimating displacement vectors, J. Geod. Soc. Japan, 39, 387–410, 1993b.

    Google Scholar 

  17. Meissl, P., Die innere Genauigkeit eines Punkthaufens, Öster. Z. Verm., 50, 159–165, 186–194, 1962.

    Google Scholar 

  18. Meissl, P., Über die innere Genauigkeit dreidimensionaler Punkthaufen, Z. Verm., 90, 109–118, 1965.

    Google Scholar 

  19. Meissl, P., Zusammenfassung und Ausbau der inneren Fehlertheorie eines Punkthaufens, in Beiträge zur Theorie der Geodätischen Netze im Raum, DGK, A61, pp. 8–21, edited by R. Rinner, K. Killian, and P. Meissl, German Geod. Comm., Munich, 1969.

    Google Scholar 

  20. Nakane, K., Scale accuracy of geodetic network in Japan, Bull. Geogr. Surv. Inst. Japan, 36, 1–19, 1991.

    Google Scholar 

  21. Prescott, W. H., The determination of displacement fields from geodetic data along a strike slip fault, J. Geophys. Res., B86, 6067–6072, 1981.

    Article  Google Scholar 

  22. Savage, J. C. and R. O. Burford, Accumulation of tectonic strain in California, Bull. Seismol. Soc. Am., 60, 1877–1896, 1970.

    Google Scholar 

  23. Savage, J. C., M. Lisowski, and W. H. Prescott, Geodetic strain measurements in Washington, J. Geophys. Res., B86, 4929–4940, 1981a.

    Article  Google Scholar 

  24. Savage, J. C., W. H. Prescott, M. Lisowski, and N. E. King, Strain accumulation in southern California, 1970–1980, J. Geophys. Res., B86, 6991–7001, 1981b.

    Article  Google Scholar 

  25. Segall, P. and M. V. Matthews, Displacement calculation from geodetic data and the testing of geophysical deformation models, J. Geophys. Res., B93, 14954–14966, 1988.

    Article  Google Scholar 

  26. Shen, Z. K., D. Jackson, and B. Ge, Crustal deformation across and beyond the Los Angeles basin from geodetic measurements, J. Geophys. Res., B101, 27957–27980, 1996.

    Article  Google Scholar 

  27. Thatcher, W., Horizontal crustal deformation from historic geodetic measurements in southern California, J. Geophys. Res., B84, 2351–2370, 1979.

    Article  Google Scholar 

  28. Welsch, W., Finite element analysis of strain patterns from geodetic observations across a plate margin, Tectonophys., 97, 57–71, 1983.

    Article  Google Scholar 

  29. Xu, P. L., Testability, datum definitions, coordinate systems and free net adjustment, Pres. at 8th Int. Symp. on Recent Crustal Movement, Kobe, Japan, Dec. 6–10, 1993, 1993.

  30. Xu, P. L., Testability and adjustment in free net models, J. Geod. Soc. Japan, Suppl. issue, 40, 315–320, 1994.

    Google Scholar 

  31. Xu, P. L., A general solution in geodetic nonlinear rank-defect models, Boll. Geod. Sc. Affini, 56, 1–25, 1997.

    Google Scholar 

  32. Xu, P. L., S. Shimada, Y. Fujii, and T. Tanaka, Invariant geodynamical information in geometric geodetic measurements, Geophys. J. Int., 142, 586–602, 2000.

    Article  Google Scholar 

  33. Yu, E. and P. Segall, Slip in the 1868 Hayward earthquake from the analysis of historical triangulation data, J. Geophys. Res., B101, 16101–16118, 1996.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peiliang Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Shimada, S., Fujii, Y. et al. Geodynamical value of historical geodetic measurements: A theoretical analysis. Earth Planet Sp 52, 993–997 (2000). https://doi.org/10.1186/BF03352319

Download citation

Keywords

  • Generalize Inverse
  • Crustal Deformation
  • Geodetic Data
  • Geodetic Network
  • Geodynamical Process