Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

The influence of 5000 year-old and younger glacial mass variability on present-day crustal rebound in the Antarctic Peninsula

Abstract

Assessment of Antarctic rebound is complicated by two issues: (1) The total ice volume at Last Glacial Maximum is contentious, with estimates ranging from just a few meters to several tens of meters of equivalent eustatic sea level rise. (2) The late-Holocene mass budget is also uncertain. Space-based geodesy may provide important data in the coming years for estimating the recent ice mass balance state of Antarctica. Toward this end, GPS has an important role for isolating the solid earth movements that are associated with postglacial rebound. Here we provide numerical examples of vertical motions that are predicted by coupling realistic glacial load histories to 20th century ice mass imbalance estimates for the Antarctic Peninsula. The main complexity revealed by these examples is the striking difference among predictions that have an oscillatory mass change during the last 5000 to 50 years, as opposed to those having a continuous (non-oscillatory) mass drawdown of the grounded ice sheet.

References

  1. Barker, P. F., The Cenozoic history of the Pacific margin of the Antarctic Peninsula: ridge crest trench interactions, J. Geol. Soc. Lond., 139, 787–801, 1982.

    Article  Google Scholar 

  2. Bell, A. C. and E. C. King, New seismic data support Cenozoic rifting in George VI Sound, Antarctic Peninsula, Geophys. J. Int., 134, 889–902, 1998.

    Article  Google Scholar 

  3. Bentley, M. J. and J. B. Anderson, Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea-Antarctic Peninsula region during the Last Glacial Maximum, Antarctic Sci., 10, 309–325, 1998.

    Article  Google Scholar 

  4. Björck, S., S. Olsson, C. Ellis-Evans, H. Håkansson, O. Humlum, and J. M. de Lirio, Late Holocene paleoclimatic records from lake sediments on James Ross Island, Antarctica, Paleogeog. Paleoclimatology, Paleoecology, 121, 195–220, 1996.

    Article  Google Scholar 

  5. Clapperton, C. M., Quaternary glaciations in the Southern Ocean and Antarctic Peninsula area, Quat. Sci. Rev., 9, 229–252, 1990.

    Article  Google Scholar 

  6. Clapperton, C. M. and D. E. Sugden, Holocene glacier fluctuations in South America and Antarctica, Quat. Sci. Rev., 7, 185–198, 1988.

    Article  Google Scholar 

  7. Conway, H., B. L. Hall, G. H. Denton, A. M. Gades, and E. D. Waddington, Past and future grounding-line retreat of the West Antarctic ice sheet, Science, 286, 280–283, 1999.

    Article  Google Scholar 

  8. Cullather, R. I., D. H. Bromwich, and M. L. Van Woert, Spatial and temporal variability of Antarctic precipitation from atmospheric methods, J. Climate, 11, 334–367, 1998.

    Article  Google Scholar 

  9. Dietrich, R., R. Dach, G. Engelhardt, J. Ihde, W. Korth, H.-J. Kutterer, K. Lindner, M. Mayer, F. Menge, H. Miller, W. Niemeier, J. Perlt, M. Pohl, H. Salbach, H.-W. Schenke, T. Schöne, G. Seeber, A. Veit, and C. Völksen, ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica—an analysis based on different individual solutions, J. Geodesy, 2001 (in press).

  10. Denton, G. H., M. L. Prentice, and L. H. Burckle, Cainozoic history of the Antarctic ice sheet, in Geology of Antarctica, edited by R. J. Tingey, pp. 365–433, Oxford Univ. Press, Clarendon, Oxford, 1991.

    Google Scholar 

  11. Drewry, D. J. and E. M. Morris, The response of large ice sheets to climate change, Phil. Trans. R. Soc. London, Ser. B, 338, 235–242, 1992.

    Article  Google Scholar 

  12. Doake, C. S. M., H. F. J. Corr, H. Rott, P. Skvarca, and N. W. Young, Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica, Nature, 391, 778–780, 1998.

    Article  Google Scholar 

  13. Genthon, C. and G. Krinner, Convergence and disposal of energy and moisture on the Antarctic polar cap from ECMWF reanalysis and forecasts, J. Climate, 11, 1703–1716, 1998.

    Article  Google Scholar 

  14. Herring, T. A., Geodetic applications of GPS, Proc. I.E.E.E., 87, 92–110, 1999.

    Google Scholar 

  15. Hole, M. J., G. Rogers, A. D. Saunders, and M. Storey, Relation between alkalic volcanism and slab window formation, Geology, 19, 657–660, 1991.

    Article  Google Scholar 

  16. Ingólfsson, Ó., C. Hort, P. A. Berkman, S. Björck, E. Calhoun, I. Goodwin, B. Hall, K. Hirakawa, M. Melles, P. Moller, and M. L. Prentice, Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land, Antarctic Sci., 10, 326–344, 1998.

    Article  Google Scholar 

  17. Ivins, E. R. and T. S. James, Simple models for late-Holocene and present-day Patagonian glacier fluctuation and predictions of a geodetically detectable isostatic response, Geophys. J. Int., 131, 601–624, 1999.

    Article  Google Scholar 

  18. James, T. S. and E. R. Ivins, Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum, J. Geophys. Res., 103, 4993–5017, 1998.

    Article  Google Scholar 

  19. James, T. S., J. J. Clague, K. Wang, and I. Hutchinson, Postglacial rebound at the northern Cascadia subduction zone, Quat. Sci. Rev., 19, 1527–1541, 2000.

    Article  Google Scholar 

  20. Jòhannesson, T., C. Raymond, and E. Waddington, Time-scale for adjustment of glaciers to changes in mass balance, J. Glaciology, 35, 355–369, 1989.

    Google Scholar 

  21. Lambeck, K., C. Smither, and P. Johnston, Sea-level change, glacial rebound and mantle viscosity for northern Europe, Geophys. J. Int., 134, 102–144, 1998.

    Article  Google Scholar 

  22. Okuno, J. and M. Nakada, Rheological structure of the upper mantle inferred from the Holocene sea-level change along the west coast of Kyushu, Japan, in Dynamics of the Ice Age Earth: A Modern Perspective, edited by P. Wu, pp. 443–458, Trans Tech Pub., Uetikon-Zürich, Switzerland, 1998.

    Google Scholar 

  23. Payne, A. J., D. E. Sugden, and C. M. Clapperton, Modeling the growth and decay of the Antarctic Peninsula Ice Sheet, Quaternary Res., 31, 119–134, 1989.

    Article  Google Scholar 

  24. Peltier, W. R., Ice age paleotopography, Science, 265, 195–201, 1994.

    Article  Google Scholar 

  25. Raymond, C. A., M. B. Heflin, E. R. Ivins, and T. S. James, Modern uplift of the Transantarctic mountains: Preliminary results of an autonomous GPS array, 8th Int. Symp. Antarctic Earth Sci., July 5–9, 1999, Victoria University of Wellington, New Zealand (abs.), 1999.

    Google Scholar 

  26. Scarrow, J. H., P. T. Leat, C. D. Wareham, and I. L. Millar, Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith: arecord of arc evolution, Contrib. Mineral. Petrol., 131, 289–305, 1998.

    Article  Google Scholar 

  27. Scherneck, H.-G., J. M. Johansson, J. X. Mitrovica, and J. L. Davis, The BIFROST project: GPS determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWEPOS network, Tectonophys., 294, 305–321, 1998.

    Article  Google Scholar 

  28. Studinger, M. and H. Miller, Crustal structure of the Filchner-Ronne shelf and Coats Land, Antarctica, from gravity and magnetic data: implications for the breakup of Gondwana, J. Geophys. Res., 104, 20,379–20,394, 1999.

    Article  Google Scholar 

  29. Tregoning, P., B. Twilley, M. Hendy, and D. Zwartz, Monitoring isostatic rebound in Antarctica using continuous remote GPS observation, GPS Solutions, 2, 70–75, 1999.

    Article  Google Scholar 

  30. Vaughan, D. G., J. L. Bamber, M. Giovinetto, J. Russell, and A. P. R. Cooper, Reassessment of net surface mass balance in Antarctica, J. Climate, 12, 933–946, 1999.

    Article  Google Scholar 

  31. Wolf, D., The normal modes of a layered, incompressible Maxwell half-space, J. Geophys., 57, 106–117, 1985.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erik R. Ivins.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivins, E.R., Raymond, C.A. & James, T.S. The influence of 5000 year-old and younger glacial mass variability on present-day crustal rebound in the Antarctic Peninsula. Earth Planet Sp 52, 1023–1029 (2000). https://doi.org/10.1186/BF03352325

Download citation

Keywords

  • Global Position System
  • Solid Earth
  • Last Glacial Maximum
  • Antarctic Peninsula
  • Uplift Rate