Skip to main content

Advertisement

The use of GPS arrays in detecting the ionospheric response during rocket launchings

Article metrics

Abstract

In this paper we investigate the form and dynamics of shock acoustic waves (SAW) generated during the rocket Proton launching from the Baikonur cosmodrome in 1998 and 1999. In spite of the difference of geophysical conditions, the ionospheric response for all launchings has a period of about 300 s and the amplitude exceeding background fluctuations under quiet and moderate geomagnetic conditions by factors of 2 to 5 as a minimum. The angle of elevation of the SAW wave vector varies from 45° to 60°, and the SAW phase velocity (900–1200 m/s) approaches the sound velocity at heights of the ionospheric F region maximum. The position of the SAW source, inferred by neglecting refraction corrections, corresponds to the segment of the rockets path at a distance no less than 700–900 km from the launch pad, which is consistent with the estimated delay time of SAW source triggering (250–300 s).

References

  1. Afraimovich, E. L., A. I. Terechov, M. Yu. Udodov, and S. V. Fridman, Refraction distortions of transionospheric radio signals caused by changes in a regular ionosphere and by travelling ionospheric disturbances, J. Atmos. and Solar-Terr. Phys., 54, 1013–1020, 1992.

  2. Afraimovich, E. L., K. S. Palamartchouk, and N. P. Perevalova, GPS radio interferometry of travelling ionospheric disturbances, J. Atmos. and Solar-Terr. Phys., 60, 1205–1223, 1998.

  3. Afraimovich, E. L., O. N. Boitman, E. I. Zhovty, A. D. Kalikhman, and T. G. Pirog, Dynamics and anisotropy of traveling ionospheric disturbances as deduced from transionospheric sounding data, Radio Sci., 34, 477–487, 1999.

  4. Arendt, P. R., Ionospheric undulations following “Appolo-14” launching, Nature, 231, 438–439, 1971.

  5. Bertel, L., F. Bertin, and J. Testud, De la mesure du contenu électronique intégré appliqué à l’observation des ondes de gravité de moyenne échelle, J. Atmos. andSolar-Terr. Phys., 38, 261–270, 1976.

  6. Calais, E. and J. B. Minster, GPS detection of ionospheric perturbations following the January 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045–1048, 1995.

  7. Calais, E. and J. B. Minster, GPS detection of ionospheric perturbations following a Space Shuttle ascent, Geophys. Res. Lett., 23, 1897–1900, 1996.

  8. Calais, E., B. J. Minster, M. A. Hofton, and M. A. H. Hedlin, Ionospheric signature of surface mine blasts from Global Positioning System measurements, Geophys. J. Int., 132, 191–202, 1998.

  9. Davies, K., Ionospheric Radio Waves, Blaisdell Publishing Company, A Division of Ginn and Company, Waltham, Massachusetts-Totonto-London, 1969.

  10. Fitzgerald, T. J., Observations of total electron content perturbations on GPS signals caused by a ground level explosion, J. Atmos. and Solar-Terr. Phys., 59, 829–834, 1997.

  11. Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice, 327 pp., Springer-Verlag, Wien, New York, 1992.

  12. Jacobson, A. R. and R. C. Carlos, Observations of acoustic-gravity waves in the thermosphere following Space Shuttle ascents, J. Atmos. and Solar-Terr. Phys., 56, 525–528, 1994.

  13. Karlov, V. D., S. I. Kozlov, and G. N. Tkachev, Large-scale disturbances in the ionosphere produced by rocket flight with the operating engine, Kosmicheskiye issledovaniya, 18, 266–277, 1980.

  14. Klobuchar, J. A., Real-time ionospheric science: The new reality, Radio Sci., 32, 1943–1952, 1997.

  15. Li, Y Q., A. R. Jacobson, R. C. Carlos, R. S. Massey, Y. N. Taranenko, and G. Wu, The blast wave of the Shuttle plume at ionospheric heights, Geophys. Res. Lett., 21, 2737–2740, 1994.

  16. Mendillo, M., The effects of rocket launches of the ionosphere, Adv. Space Res., 1, 275–290, 1981.

  17. Mendillo, M., Modification of the ionosphere by large space vehicles, Adv. Space Res., 2, 150–159, 1982.

  18. Mercier, C. and A. R. Jacobson, Observations of atmospheric gravity waves by radio interferometry: are results biased by the observational technique?, Ann. Géophys., 15, 430–442, 1997.

  19. Nagorsky, P. M., Analysis of the HF radio signal response to ionospehric plasma disturbances caused by shock acoustic waves, Izv VUZov Radiofizika, 42, 36–44, 1999.

  20. Noble, S. T., A large-amplitude traveling ionospheric disturbance exited by the Space Shuttle during launch, J. Geophys. Res., 95, 19,037–19,044, 1990.

Download references

Author information

Correspondence to Edward L. Afraimovich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Keywords

  • Ionospheric Disturbance
  • Frequency Doppler Shift
  • Horizontal Projection
  • Estimate Delay Time
  • Ionospheric Response